9. Primitives, intégrales, logarithmes et exponentielles

1. Calculer les primitives suivantes (k est un paramètre réel non nul).

$$x^{2} + \frac{x^{3}}{4} \operatorname{d} x \qquad 13) \, \clubsuit \, \int x \exp(x^{2} + 1) \, \mathrm{d} x;$$

$$14) \, \spadesuit \, \int \frac{\ln(x)^{p}}{2} \, \mathrm{d} x;$$

25)
$$\int x \ln(x) dx$$
;

2)
$$\oint \int (\frac{x^2-1}{x^2}) dx$$

14)
$$\oint \frac{\ln(x)^p}{x} dx$$
;

3)
$$\int (x+3)^2 x^4 dx$$

27)
$$\int x^2 e^{2x} \, \mathrm{d}x$$
;

16)
$$\oint x \sin(3x) dx$$
;

$$28) \int x^2 \cos(2x) \, \mathrm{d}x;$$

29)
$$\int \frac{x}{x^2+1} \, \mathrm{d}x$$
;

$$18) \int x \cos(2x) \, \mathrm{d}x$$

$$30) \ \clubsuit \int \sin^2(x) \, \mathrm{d}x \,;$$

7)
$$\int (4x + x^3 + 2x\sin(x^2)) dx$$
;

$$19) \int xe^{2x} \, \mathrm{d}x$$

31)
$$\oint \cos^2(x) dx$$
;

8)
$$\oint e^{kt} dt$$
.

20)
$$\oint \int x^2 e^{2x} dx$$
;

31)
$$\oint \int \cos^2(x) dx$$
;
32) $\int \cos^2(x) \sin(x) dx$;

9)
$$\int (x^2 - 3x + 2) dx$$

21)
$$\oint \int \frac{x}{\sqrt{x^2+1}} dx$$

33)
$$\int \frac{3x^2}{x^3+1} \, \mathrm{d}x$$
;

$$10) \int \sqrt[3]{x^2} + \cos(x) \, \mathrm{d}x;$$

22)
$$\oint \sin^2(x)\cos(x)\,\mathrm{d}x$$
;

$$34) \int x^3 \exp(x^4) \, \mathrm{d}x;$$

23)
$$\int \frac{\sin(x)\cos(x)}{1+\cos^2(x)} dx;$$

$$35) \int \frac{e^x}{1+e^{2x}} \, \mathrm{d}x;$$

12)
$$\oint \int \frac{5}{2x+3} \, \mathrm{d}x$$
;

$$24) \ \, \spadesuit \, \int x^2 \exp(2x^3) \, \mathrm{d}x$$

36)
$$\int \arctan(x) dx$$
.

2. Calculer les intégrales suivantes, sachant que toutes les fonctions demandées sont intégrables sur les intervalles correspondants.

1)
$$\oint \int_0^2 (e^x + x) dx$$

6)
$$\clubsuit \int_2^5 (t + \sqrt{3})(t - \sqrt{3}) dt$$
 12) $\clubsuit \int_0^2 2xe^{x^2} dx$;

13)
$$\int_0^{\sqrt{\pi}} x \sin(\frac{x^2}{4}) \mathrm{d}x;$$

8)
$$\int_0^3 \frac{1}{1+t} dt$$
;
9) $\oint_0^a (ax - x^2) dx$;

4)
$$\int_0^5 (5x - x^2) \, \mathrm{d}x$$

15)
$$\int_0^1 x \sin(\pi x^2) dx$$
;

$$5) \ \spadesuit \ \int_0^{\frac{\pi}{6}} \sin(2x) \, \mathrm{d}x$$

16)
$$\int_{1}^{2} x^{2} \ln(x) dx$$
.

3. Calculer les intégrales suivantes (les fonctions considérées sont intégrables).

1)
$$\int_{1}^{+\infty} \frac{1}{x^2} \, \mathrm{d}x$$
;

5)
$$\int_{\mathbb{R}} x^2 e^{-|x|} dx = \int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$
;

2)
$$\oint \int_{-\infty}^{+\infty} e^{-|x|} dx$$
;

6)
$$\int_0^{+\infty} x^3 e^{-x^2} dx$$
;

3)
$$\int_0^{+\infty} xe^{-2x} dx$$
;
4) $\oint \int_0^{+\infty} xe^{-x^2} dx$;

7)
$$\int_0^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x$$
;

- 4. \spadesuit Une voiture suivant la vitesse v(t) = 120 + 10t, où v est exprimée en km/h et t en heures. Déterminer la distance parcourue entre les instants t = 0 et t = 1h30;
- 5. Même question pour $v(t) = 120 + 5\sin(\pi t)$;
- 6. A Quel est le volume du solide de révolution engendré par la rotation du graphe de la fonction f(x) = x autour de l'axe des abscisses, pour $x \in [0, H]$.
- 7. Même question pour $f(x) = x^2$.
- 8. Résoudre dans \mathbb{R} les équations suivantes :

1) $h \ln(x-6) = 1$;

- 5) $2^{3t} = 7$
- 2) $\log_3(x) + \log_3(5) = \log_3(-3x + 16)$
- 6) $9^x 5.3^x + 6 = 0$:
- 3) $\ln(x+2) + \ln(x-5) = \ln(30)$:
- 7) $\ln(x^2 7) \ln(x + 1) = \ln(3)$;

4) $\oint \log_2 x = \log_x 2$;

- 8) $2\ln(x-4) = \ln(x) 2\ln(2)$
- 9. \spadesuit Prouver la relation $\frac{1}{\log_a x} + \frac{1}{\log_b x} = \frac{1}{\log_{ab} x}$, pour tous a, b, x > 0.
- 10. \spadesuit Démontrer la formule de changement de base $\log_b(x) = \log_a(x) \log_b(a)$.
- 11. Résoudre dans \mathbb{R} les équations
 - 1) $\blacktriangle 16^x 7.4^x = 8$.

2) $3^{x+2} + 9^{x+1} = 810$.

- 12. Calculer les limites suivantes
 - 1) $\oint \lim_{r\to 0^+} \frac{\sin 7x}{5\pi}$

4) $\oint \lim_{x\to 0^+} x^x$;

2) $\lim_{x\to 0} \frac{\cos x-1}{x}$

5) $\lim_{x\to 0} \frac{1}{x} \ln(1+x^2)$;

3) $\lim_{x \to a} \frac{x \ln a - a \ln x}{x - a} \qquad (a > 0)$

- 6) $\lim_{x\to 0} (1+x^2)^{\frac{1}{x}}$;
- 13. Sachant que $e^x > 1$ pour tout x > 0. Démontrer l'inégalité $e^x > 1 + x \quad \forall x > 0$.
- 14. \spadesuit Déterminer le développement de Mac-Laurin à l'ordre n de la fonction $x \mapsto e^x$;
- 15. \spadesuit Déterminer le développement de Mac-Laurin à l'ordre 7 (et à l'ordre 8) de la fonction $x \mapsto \sin x$. Que peut-on dire du reste de cette approximation?
- 16. \spadesuit Déterminer le développement de Taylor à l'ordre 5 en $x_0 = 1$ de la fonction $x \mapsto \ln x$;
- 17. Déterminer le développement de Taylor à l'ordre 5 en $x_0 = 0$ de la fonction $x \mapsto \ln(1+x)$;
- 18. Déterminer les extrema locaux de la fonction $f: x \mapsto x + \ln(x^2 1)$ sur son domaine de définition.
- 19. \spadesuit Déterminer les extrema locaux de la fonction $f: x \mapsto \frac{e^x}{x}$ sur son domaine de définition.
- 20. Déterminer l'équation de la parabole osculatrice au graphe de la fonction $f: x \mapsto \frac{e^x}{r}$ au point d'abscisse 1:
- 21. Estimer l'erreur commise en remplaçant la fonction sin par son développement de Mac-Laurin à l'ordre 3.

Faire de même pour le développement à l'ordre 4.

- 22. Etudier la concavité de la fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{x-2}{\sqrt{x+2}}$
- 23. Que vaut $\int_0^{\sqrt{\pi}} x \sin(\frac{x^2}{4}) dx$?
 - 1) $\frac{2-\sqrt{2}}{2}$
- 2) $\frac{\sqrt{2}-2}{2}$
- 3) $2 \sqrt{2}$ 4) $\sqrt{2} 2$

- 24. Que vaut $\int_0^3 (x^2 2x + 2) dx$?
- 25. Que vaut l'intégrale $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos(2x) dx$?
 - 1) $\frac{\sqrt{3}-2}{4}$ 2) $\frac{\sqrt{3}-2}{2}$

- 3) $\frac{\sqrt{3}+2}{2}$
- 4) $\sqrt{3} 2$

26. Que vaut $\int_0^1 \frac{x^2}{\sqrt{x^3+2}} dx$?

30.	\spadesuit Parmi les expressions suivantes, laquelle est toujours égale à $\log_{\frac{1}{a}}x^n,$ pour tous $a>1, n\in\mathbb{N}$ et $x>0$?			
	$1) -n\log_a x$	$2) \frac{1}{n} \log_a x$	$3) -\frac{1}{n}\log_a x$	4) $n\log_a x$
31.	Pour tous a,b,c>0, on a $\log_{ac}(ab) = \log_c b$			
	1) Vrai		2) Faux	
32.	Pour tous a,b>0, on a $\log_a(ab) = 1 + \log_a b$			
	1) Vrai		2) Faux	
33.	Résoudre dans \mathbb{R} l'équation $4^x-6+8.4^{-x}=0$. Que vaut la somme des solutions, exprimée sous forme décimale?			
34.	On considère l'équation $\ln(x) = \ln(2x+3) - \ln(x+4)$, où l'inconnue x est réelle. Déterminer l'unique proposition correcte parmi celles qui suivent.			
	1) Elle admet deux solutions dont le produit vaut -3			
	2) Elle admet deux solutions, dont le produit vaut 3			
	3) Elle admet une seule solution, comprise entre -5 et -1			
	4) Elle admet une seule solution, comprise entre 0 et 5			
35.	L'équation $\left(\frac{2}{3}\right)^{2x} = -\frac{27}{8}$, où l'inconnue x est réelle			
	1) admet une seule solution, qui est positive			
	2) admet une seule solution, qui est positive			
	3) admet deux solutions			
	4) n'admet pas de solution			
36.	Parmi les expressions suivantes, laquelle est égale à $\log_{\frac{1}{a}}(\frac{1}{b})$, quels que soient les nombres réels a,b strictement positifs tels que $a \neq 1$?			
	1) $\log_b(a)$	$2) - \log_a(b)$	3) $\log_a(\frac{1}{b})$	4) $\log_a(b)$
37.		ns suivantes, laquelle est n un nombre naturel n		que soient les nombres a et x

3) $\frac{2}{3}(\sqrt{3}-\sqrt{2})$ 4) $\frac{3}{2}(\sqrt{3}-\sqrt{2})$

4) $\sqrt{3}-2$

4) $2\ln(1+x^2)$

3) $\frac{\sqrt{3}+2}{2}$

3) $x \operatorname{arctg}(x)$

1) $\frac{2}{3}\sqrt{3}$ 2) $-\frac{2}{3}\sqrt{3}$

2) $\frac{\sqrt{3}-2}{2}$

29. Que vaut la primitive $\int \frac{x}{1+x^2} dx$, sur \mathbb{R} , et à une constante additive près?

2) $\ln(1+x^2)$

28. \spadesuit On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \log_{\frac{1}{e}}(x^2)$. Que vaut f'(2)?

27. Que vaut l'intégrale $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos(2x) dx$?

1) $\frac{\sqrt{3}-2}{4}$

1) $\ln(\sqrt{1+x^2})$

1) $\log_a(x^n)$;

2) $\log_a(nx)$;

3) $\frac{1}{n}\log_a(x)$;

4) $n \log_a(x)$.

38. Résoudre l'équation $\ln(x+4) + \ln(x-1) = \ln(6)$.

39. On considère l'équation $\ln(2x+3) + \ln(x+4) = \ln(18)$, où l'inconnue x est réelle. Cette équation

1) admet une solution, qui appartient à l'intervalle [0, 3[

2) admet deux solutions dont le produit vaut -3

3) n'admet pas de solution

4) admet une solution, qui appartient à l'intervalle]-5,0[

40. Parmi les propositions suivantes, laquelle est égale à $\log_c(a)/\log_c(b)$, quels que soient les nombres a, b, c > 1.

1) $\log_a(b)$

2) $\log_b a$

3) $\frac{\ln(a)\ln(b)}{\ln(c)^2}$

4) $\log_c(\frac{a}{b})$

41. Quelle est la solution dans \mathbb{R} de l'équation $3^{x+2} + 9^{x+1} = 810$.

42. \clubsuit Que vaut la primitive $\int \ln(x) dx$, à une constante près, et sur $]0, +\infty[?]$

 $1) -x + \ln(x)$

2) $x - x \ln(x)$ 3) $-x + x \ln(x)$ 4) $x - \ln(x)$

43. Que vaut $\int_0^2 t^2 e^{t^3} dt$?

1) $\frac{e^8-1}{3}$ 2) $\frac{e^8-1}{3} + C, C \in \mathbb{R}$ 3) $\frac{8e^8}{3}$

4) $52e^8$