

Mathématique

Calcul intégral II : une extension et quelques applications

Pierre Mathonet

Département de Mathématique Faculté des Sciences

Liège, automne 2019

Intégrales généralisées I

Problème : définir l'intégrale d'une fonction définie sur [a, b[,]a, b] ou [a, b[, pas nécessairement continue sur <math>[a, b].

Exemples: sur l'intervalle]0,1[:

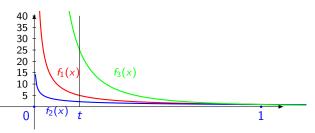
$$f_1:]0,1[\to \mathbb{R}: x \mapsto \frac{1}{x},$$

ou

$$f_2:]0,1[\to \mathbb{R}: x \mapsto \frac{1}{\sqrt{x}}$$

ou

$$f_3:]0,1[\rightarrow \mathbb{R}: x \mapsto \frac{1}{x^2}.$$



Intégrales généralisées II

Chaque fonction est intégrable sur [t,1] pour $t\in]0,1[$. On calcule

- $I_1(t) = \int_t^1 f_1(x) dx = [\ln(x)]_t^1 = -\ln(t)$;
- $I_2(t) = \int_t^1 f_2(x) dx = [2\sqrt{x}]_t^1 = 2 2\sqrt{t}$.
- $I_3(t) = \int_t^1 f_3(x) dx = \left[\frac{-1}{x}\right]_t^1 = -1 + \frac{1}{t}$.

On calcule les limites

$$\lim_{t\to 0^+} I_1(t) = +\infty, \quad \lim_{t\to 0^+} I_2(t) = 2, \quad \lim_{t\to 0^+} F_3(t) = +\infty,$$

donc seule l_2 admet une limite finie en 0. On dira que les autres fonctions ne sont pas intégrables sur]0,1].

Définitions formelles

Définition (Intégrabilité sur [a, b])

Soit f une fonction continue sur l'intervalle]a,b] ($b\in\mathbb{R}$, $a\in\mathbb{R}$ ou $a=-\infty$). Alors f est intégrable sur]a,b], ou f est intégrable en a^+ (si $a\in\mathbb{R}$), si la fonction

$$I(t) = \int_{t}^{b} f(x) \, \mathrm{d}x$$

admet une limite *finie* en a^+ . Si tel est le cas, on note

$$\int_a^b f(x) dx = \lim_{t \to a^+} I(t) = \lim_{t \to a^+} \int_t^b f(x) dx.$$

- L'intégrale $\int_a^b f(x) \, \mathrm{d}x$ est appelée intégrale impropre. Sa définition ne permet pas d'avoir les mêmes propriétés que l'intégrale vue au chapitre précédent.
- L'intégrabilité sur [a, b[se définit de la même manière en considérant la limite en b⁻.

Intégrabilité sur un intervalle ouvert

Définition (Intégrabilité sur]a, b[)

Soit f une fonction continue sur]a,b[et $c\in]a,b[$. La fonction f est intégrable sur]a,b[si et seulement si elle est intégrable sur]a,c] et sur [c,b[, auquel cas on définit l'intégrale sur]a,b[par

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Le nombre ainsi défini ne dépend pas de c et est une intégrale impropre.

- 1. f est absolument intégrable sur I si |f| est intégrable sur I.
- 2. Pour les fonctions à valeurs positives, la notion d'intégrabilité absolue est la même que la notion d'intégrabilité.
- 3. Toute fonction absolument intégrable est intégrable.
- 4. Certains auteurs ne considèrent comme intégrables que des fonctions qui sont absolument intégrables, et on parle d'intégrale flèchée quand $\int_a^t f(x) dx$ converge et quand $\int_a^t |f(x)| dx$ ne converge pas.

Théorème fondamental

Théorème

Si f est une fonction continue et intégrable sur]a,b[(resp. [a,b[,]a,b]), alors on a

$$\int_a^b f(x) \, \mathrm{d}x = [F]_a^b,$$

pour toute primitive F de f sur]a,b[(resp. [a,b[,]a,b]), où $[F]_a^b = \lim_{x \to b^-} F(x) - \lim_{x \to a^+} F(x)$.

Exemples

1. La fonction $f(x) = \frac{1 - \ln(x)}{x^2}$ est intégrable et absolument intégrable sur $\lfloor \frac{1}{2}, +\infty \rfloor$. En effet, on a

$$\int_{\frac{1}{2}}^{+\infty} \frac{1 - \ln(x)}{x^2} \, \mathrm{d}x = \left[\frac{\ln(x)}{x}\right]_{\frac{1}{2}}^{+\infty} = 0 - 2\ln(\frac{1}{2}) = 2\ln(2).$$

et

$$\int_{\frac{1}{2}}^{+\infty} \left| \frac{1 - \ln(x)}{x^2} \right| dx = \int_{\frac{1}{2}}^{e} \frac{1 - \ln(x)}{x^2} dx + \int_{e}^{+\infty} \frac{\ln(x) - 1}{x^2} dx$$
$$= \frac{1}{e} - 2\ln(\frac{1}{2}) - (0 - \frac{1}{e}) = \frac{2}{e} + 2\ln(2).$$

2. La fonction $f(x) = xe^{-x^2}$ est absolument intégrable sur $[0, +\infty[$:

$$\int_0^t x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} \right]_0^t = -\frac{1}{2} (e^{-t^2} - 1)$$

donc

$$\int_{0}^{+\infty} x e^{-x^{2}} dx = \lim_{t \to +\infty} -\frac{1}{2} (e^{-t^{2}} - 1) = \frac{1}{2}.$$

Université de Liège, Faculté des Sciences, Département de Mathématique.

Contre-exemples

3. La fonction définie par $f(x) = \sin(x)$ n'est pas intégrable sur $[0, +\infty[$. En effet, pour tout $t \in [0, +\infty[$, on a

$$\int_0^t \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^t = 1 - \cos(t),$$

et cette fonction n'admet pas de limite quand t tend vers l'infini.

- 4. On peut montrer que la fonction $f(x) = \frac{\sin(x)}{x}$ est intégrable, mais pas absolument intégrable sur $]\frac{\pi}{2}, +\infty[$.
- 5. La fonction

$$f: [0; +\infty[\to [0; +\infty[: x \mapsto \frac{1}{\sqrt{x}}]])$$

n'est pas intégrable en $+\infty$.

Application I: Aires, longueurs, volumes

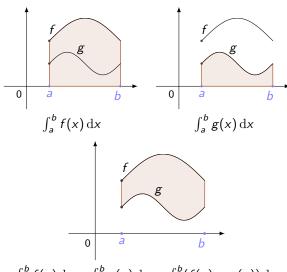
Commençons par l'aire comprise entre les graphes de deux fonctions. On suppose le repère orthonormé.

Proposition

L'aire comprise entre les graphes de deux fonctions continues f et g sur un intervalle [a,b] et les droites d'équation x=a et x=b (donc l'aire au dessus du segment [a,b] est donnée par

$$A = \int_a^b |f(x) - g(x)| \, \mathrm{d}x.$$

Illustration



 $\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} (f(x) - g(x)) dx.$

Longueur de courbes

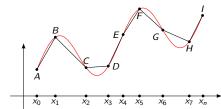
Proposition

La longueur de la courbe donnée par $\{(x, f(x)) : x \in [a, b]\}$, où f est dérivable sur [a, b], continue sur [a, b] est donnée par

$$L = \int_a^b \sqrt{1 + (Df(x))^2} \, \mathrm{d}x,$$

pour autant que la fonction $x \mapsto \sqrt{1 + (Df(x))^2}$ soit intégrable sur]a, b[.

L'idée : approcher la longueur de la courbe par une somme de longueurs de segments.



Université de Liège, Faculté des Sciences, Département de Mathématique.

Démonstration

- 1. Soit $D_n = [a = x_0, x_1, \dots, x_{n-1}, b = x_n]$ un découpage;
- 2. La somme des longueurs des segments

$$S(D_n) = \sum_{k=1}^n \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2}$$

$$= \sum_{k=1}^n \left(\sqrt{1 + \left(\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \right)^2} \right) (x_k - x_{k-1}).$$

3. il existe $r_k \in]x_{k-1}, x_k[$ tel que

$$\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}=Df(r_k).$$

4. Alors

$$S(D_n) = \sum_{k=0}^{n} \sqrt{1 + (Df(r_k))^2} (x_k - x_{k-1}).$$

C'est une somme de Riemann pour la fonction $x \mapsto \sqrt{1 + (Df(x))^2}$. On passe à la limite.

$$L = \lim_{n \to +\infty} S(D_n) = \int_a^b \sqrt{1 + (Df(x))^2} \, \mathrm{d}x.$$

Périmètre du cercle

Le demi-cercle déterminé par les points de ${\mathcal C}$ d'ordonnée positive est

$$\{(x,y)\in\mathbb{R}^2: \left\{ \begin{array}{l} x^2+y^2=R^2 \\ y\geqslant 0. \end{array} \right\} = \{(x,\sqrt{R^2-x^2}): x\in [-R,R]\}.$$

On a donc

$$Df(x) = \frac{-x}{\sqrt{R^2 - x^2}}$$

et

$$\sqrt{1+Df(x)^2} = \sqrt{1+\frac{x^2}{R^2-x^2}} = \frac{R}{\sqrt{R^2-x^2}} = \frac{1}{\sqrt{1-\left(\frac{x}{R}\right)^2}}.$$

On en déduit

$$L = \int_{-R}^{R} \frac{1}{\sqrt{1 - \left(\frac{x}{R}\right)^2}} dx = R \int_{-R}^{R} \frac{1}{R} \frac{1}{\sqrt{1 - \left(\frac{x}{R}\right)^2}} dx$$
$$= R[\arcsin\left(\frac{x}{R}\right)]_{-R}^{R} = R(\arcsin(1) - \arcsin(-1)) = \pi R.$$

Volume d'un solide de révolution

Solide de révolution :

- 1. f continue sur [a,b];
- 2. $C_f = \{(x, f(x), 0) : x \in [a, b]\}$: graphe de f dans le plan de coordonnées x, y;
- 3. On fait tourner cette courbe autour de l'axe de coordonnées x.

Proposition

Soit f une fonction continue sur un intervalle [a,b], dérivable sur]a,b[. Le volume du solide de révolution déterminé par la rotation de la courbe \mathcal{C}_f autour de l'axe des abscisses est donné par

$$V = \pi \int_a^b f(x)^2 \, \mathrm{d}x.$$

Preuve: comme pour la longueur d'une courbe.

Exemple: la boule

On fait tourner le demi-cercle $\{(x, \sqrt{R^2 - x^2}, 0) : x \in [-R, R]\}$ La formule donne

$$V = \pi \int_{-R}^{R} \left(\sqrt{R^2 - x^2} \right)^2 dx = \pi \int_{-R}^{R} \left(R^2 - x^2 \right) dx$$
$$= \pi \left[R^2 x - \frac{x^3}{3} \right]_{-R}^{R} = \frac{4}{3} \pi R^3.$$

Aire latérale d'une surface de révolution

Proposition

Soit f une fonction continue sur un intervalle [a,b], dérivable sur]a,b[. L'aire latérale du solide de révolution déterminé par la rotation de la courbe \mathcal{C}_f autour de l'axe des abscisses est donnée par

$$A = 2\pi \int_a^b f(x)\sqrt{1 + Df(x)^2} \,\mathrm{d}x,$$

pour autant que cette la fonction soit intégrable sur]a, b[.

Exemple : la surface d'une sphère de rayon R

$$A = 2\pi \int_{-R}^{R} \sqrt{R^2 - x^2} \frac{R}{\sqrt{R^2 - x^2}} dx = 2\pi \int_{-R}^{R} R dx = 4\pi R^2.$$

Le problème de John Napier of Merchiston

Comment calculer (sans machine) le produit 512.1024?

1	2	3	4	5	6	7	8	9	10
2	4	8	16	32	64	128	256	512	1024
11	12	13	14	15	16	17	18	19	20
20/18	4006	2102	1638/	32768	65536	131072	262144	52/1288	10/18576

On a une fonction $x\mapsto 2^x(x\in\{0,\ldots,20\})$, qui transforme la somme en produit, et sa réciproque qui transforme le produit en somme. Mais ce n'est pas très précis. Peut-on l'améliorer ? On peut choisir $x\in\mathbb{Z}$, ou $x\in\mathbb{Q}$.

Problème

Définir une fonction $f: \mathbb{R} \to \mathbb{R}$ inversible et telle que

$$f(ab) = f(a) + f(b), \quad \forall a, b \in \mathrm{dom}_f.$$

- Pour obtenir une fonction régulière, nous demanderons que f soit dérivable.
- Nous verrons que l'on peut restreindre le domaine de f à $]0;+\infty[$ (c'est une convention).
- 1 / Toute fonction ayant cette propriété sera appelée logarithme (en grec : rapport de nombres).

 Université de Liège, Faculté des Sciences, Département de Mathématique.

Analyse du problème l

Proposition

Si la fonction f satifait les conditions imposées, alors

- elle satisfait f(1) = f(-1) = 0, f(-a) = f(a), $f(\frac{a}{b}) = f(a) f(b)$
- de plus $f(a^r) = rf(a)$ pour tout r rationnel et $a \in dom_f$.
- enfin f ne peut pas être définie en 0.

Preuve : Pour tous a, b convenables, on utilise les relations

$$f(1) = f(1.1) = f(1) + f(1)$$

$$f(1) = f((-1)(-1)) = 2f(-1)$$

$$f(-a) = f(-1) + f(a) = f(a)$$

$$f(a) = f(\frac{a}{b}b) = f(\frac{a}{b}) + f(b)$$

$$f(a^{n}) = f(a \cdots a) = nf(a) \quad \forall n \in \mathbb{N}_{0}$$

$$f(1) = f(a^{-n}a^{n}) = f(a^{-n}) + f(a^{n}) \quad \forall n \in \mathbb{N}_{0}$$

$$f(a) = f((a^{\frac{1}{n}})^{n}) = nf(a^{\frac{1}{n}}) \quad \forall n \in \mathbb{N}_{0}.$$

18 Si f est définie en 0, alors f(0) = 0, et 0 = f(0a) = f(0) + f(a). Donc f(a) = 0,...

Analyse du problème II

Remarques supplémentaires :

- Puisque toute solution du problème sera paire, il suffit de définir une solution f sur $]0; +\infty[$. Alors g(x) = f(|x|) est une solution sur \mathbb{R}_0 .
- Si f est une solution, alors pour tout $k \in \mathbb{R}_0$, kf aussi.

Proposition

Si f est une solution sur]0; $+\infty$ [, alors il existe une constante c telle que $f'(x) = c\frac{1}{2}$, pour tout x.

Preuve : Pour tout $x \in]0; +\infty[$, on a

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(\frac{x+h}{x})}{x\frac{h}{x}} = \lim_{h \to 0} \frac{f(1+\frac{h}{x})}{x\frac{h}{x}} = \frac{1}{x} \lim_{h \to 0} \frac{f(1+\frac{h}{x})}{\frac{h}{x}}.$$

La dernière limite existe puisque f est dérivable. Elle est indépendante de x et vaut (limites de fonctions composées)

$$c = \lim_{y \to 0} \frac{f(1+y)}{y} = f'(1).$$

19 On n'a plus que le choix de c pour fixer la définition. On fixe c=1.

La définition

Définition (pas exactement celle de J. Napier (1550 -1617))

La fonction logarithme népérien In est la fonction dérivable sur $]0, +\infty[$ dont la dérivée satisfait $\ln'(x) = \frac{1}{x} \ (x \in]0, +\infty[)$ et telle que $\ln(1) = 0$.

On a donc $ln(x) = \int_1^x \frac{1}{t} dt$, pour tout $x \in]0; +\infty[$.

Proposition (Propriété fondamentale)

Pour tous a, b > 0, on a

$$\ln(ab) = \ln(a) + \ln(b).$$

Preuve : Pour a > 0, la fonction $g:]0, +\infty[\to \mathbb{R} : x \mapsto \ln(ax)$ satisfait

$$g'(x) = \frac{1}{ax} a = \frac{1}{x}.$$

Il existe $c \in \mathbb{R}$ t.q. $g(x) = \ln(x) + c$, $\forall x > 0$. On trouve $c = \ln(a)$.

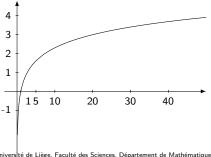
La fonction In est donc une solution du problème de Napier, et toutes les 20 solutions (dérivables) sont les multiples (non nuls) de In.

Bijection et représentation graphique

Proposition

La fonction dérivable $\ln :]0, +\infty[\to \mathbb{R} : x \mapsto \ln(x)$ est strictement croissante. On a $\lim_{x\to 0} \ln(x) = -\infty$ et $\lim_{x\to +\infty} \ln(x) = +\infty$. Donc la fonction In définit une bijection de $]0, +\infty[$ sur \mathbb{R} .

Preuve : La dérivée est strictement positive, donc ln est strictement croissante, donc injective. De plus $ln(a^r) = r ln(a)$, pour $r \in \mathbb{Q}$, on obtient donc les limites, et la fonction est surjective par le TVI.



Fonctions logarithmes de base quelconque

Si $a \in \mathbb{R}$, on a $\ln(a^r) = r \ln(a)$, pour tout rationnel r. On veut de débarrasser de ce facteur $\ln(a)$.

Proposition

Pour tout $a \neq 1$, il existe une seule fonction logarithme f telle que f(a) = 1. On a alors f(a') = r pour tout $r \in \mathbb{Q}$.

Preuve : On sait que c'est un multiple de In, facile à déterminer...

Définition

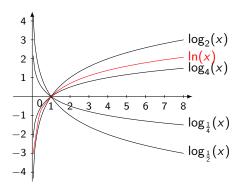
Pour tout $a \in]0, +\infty[\setminus\{1\}]$, la fonction définie ci-dessus est appelée logarithme de base a, et notée \log_a .

Proposition

On a $\log_a(x) = \frac{\ln(x)}{\ln(a)}$, pour tout x > 0. Cette fonction est une bijection. Elle est strictement croissante pour a > 1 et strictement décroissante pour a < 1. On a $D\log_a(x) = \frac{1}{x\ln(a)}$ pour tout x > 0.

La base du logarithme népérien est notée e. C'est l'unique nombre tel que $22 \ln(e) = 1$. On a donc $\ln = \log_e$.

Représentations graphiques



Pourquoi a-t-on $\log_{\frac{1}{2}}(x) = -\log_2(x)$?

Exponentielles

Les fonctions logarithmes \log_a sont toutes inversibles, pour $a \neq 1$. On a $\log_a^{-1}(r) = a^r$ pour tout r rationnel. On arrive donc naturellement à :

Définition

Pour a>0 et $a\neq 1$, l'exponentielle de base a, notée

$$exp_a: \mathbb{R} \to]0; +\infty[: x \mapsto exp_a(x) = a^x,$$

est la réciproque de log_a.

Les fonctions exponentielles sont toutes liées entre elles :

$$x = \log_a(a^x) = \frac{\ln(a^x)}{\ln(a)}, \quad \text{donc} \quad \ln(a^x) = x \ln(a).$$

Proposition (Propriété fondamentale)

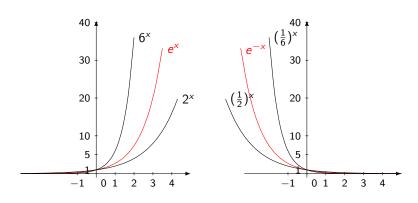
Pour tous $x, y \in \mathbb{R}$, on a

$$a^{x} = e^{x \ln(a)}, \quad a^{(x+y)} = a^{x} a^{y}, \quad a^{0} = 1 \quad a^{-x} = \frac{1}{a^{x}}.$$

Fonction logarithmes et exponentielles

- 1. La fonction exponentielle diffère d'une fonction puissance. La première s'écrit a^x tandis que la deuxième s'écrit x^p .
- 2. On peut maintenant donner un sens à toute expression du type a^b quel que soit a > 0.
- 3. L'expression a^x que nous venons définir généralise, pour a > 0, toutes celles qui ont été introduites auparavant.
- 4. On a $D(a^x) = a^x \ln(a)$ pour tout $x \in \mathbb{R}$.
- 5. Pour tout $a \in]0,1[$, la fonction a^x est décroissante et vaut 1 en 0. C'est une bijection de $\mathbb R$ sur $]0,+\infty[$. Sa limite en $-\infty$ vaut $+\infty$ et sa limite en $+\infty$ vaut 0.
- 6. Pour tout $a \in]1, +\infty[$, la fonction a^x est croissante et vaut 1 en 0. C'est une bijection de $\mathbb R$ sur $]0, +\infty[$. Sa limite en $-\infty$ vaut 0 et sa limite en $+\infty$ vaut $+\infty$.

Représentations graphiques



Fonctions hyperboliques, pour votre information

Définition

Les fonctions cosinus hyperbolique cosh et sinus hyperbolique sinh (parfois notée ${\rm sh}$) sont définies par

$$\mathsf{cosh}: \mathbb{R} \to \mathbb{R}: x \mapsto \dfrac{\mathsf{exp}(x) + \mathsf{exp}(-x)}{2}, \\ \mathsf{sinh}: \mathbb{R} \to \mathbb{R}: x \mapsto \dfrac{\mathsf{exp}(x) - \mathsf{exp}(-x)}{2}.$$

Proposition

et

Les fonctions cosh et sinh sont continues et dérivables sur \mathbb{R} . On a $D \cosh = \sinh$ et $D \sinh = \cosh$. Les propriétés de croissance-décroissance se déduisent de celles de \exp . On a

$$\cosh^2(x) - \sinh^2(x) = 1, \quad \forall x \in \mathbb{R}.$$
 et $\cosh(x) + \sinh(x) = \exp(x), \cosh(x) - \sinh(x) = \exp(-x).$

Le théorème de L'Hospital

On veut calculer la limite $\lim_{x\to a} \frac{f(x)}{g(x)}$, où $a\in\mathbb{R}\cup\{-\infty;+\infty\}$, dans un cas où le théorème sur les quotients ne s'applique pas.

Un cas simple:

Si on a le cas $\frac{0}{0}$, $a \in \mathbb{R}$, f et g dérivables en a et $g'(a) \neq 0$:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)}.$$

Remarque: Si f' et g' ont continues en a, c'est aussi $\lim_{x\to a} \frac{f'(x)}{g'(x)}$. **Exemples**:

- 1. On a $\lim_{x\to 0} \frac{1-\cos(x)}{x} = \lim_{x\to 0} \sin(x) = 0$.
- 2. On a $\lim_{x\to 0} \frac{\sin(4x)}{\sin(5x)} = \lim_{x\to 0} \frac{4\cos(4x)}{5\cos(5x)} = \frac{4}{5}$

Mais cela ne s'applique pas pour $\lim_{x\to 0} \frac{\cos(x)-1}{x^2}$. Il faut un théorème plus performant...

Le théorème

Théorème (L'Hospital)

Si il existe un voisinage V de a tel que

- 1. f et g sont dérivables sur V ;
- 2. g et g' ne s'annulent pas sur $V \setminus \{a\}$;
- 3. On a $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ ou $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$;
- 4. On a $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \ell \in \mathbb{R} \cup \{-\infty; +\infty\}$

alors

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \ell.$$

Remarques:

- 1. Le théorème s'applique aussi si $a=r^+$ ou $a=r^ (r \in \mathbb{R})$. Le voisinage V est alors de la forme $]r; r+\varepsilon[$ ou $]r-\varepsilon; r[$.
- 2. On peut appliquer le théorème plusieurs fois :

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = \lim_{x \to 0} \frac{-\sin(x)}{2x} = \lim_{x \to 0} \frac{-\cos(x)}{2} = -\frac{1}{2}.$$

Applications

Le théorème de L'Hospital permet de calculer les limites suivantes, parfois en utilisant une astuce de calcul.

- 1. $\lim_{x\to 0} \frac{\sin(3x)}{\sin(4x)} = \frac{3}{4}$;
- 2. $\lim_{x\to 0^+} x \ln x = 0$;
- 3. $\lim_{x\to+\infty}\frac{\ln x}{x}=0$;
- 4. $\lim_{x \to 0^+} \frac{\sin x}{x} = \lim_{x \to 0^-} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{\sin x}{x} = 1$.
- 5. $\lim_{x\to 0} \frac{2\sin(x)-\sin(2x)}{x-\sin(x)}$
- 6. $\lim_{x\to 0} \frac{3^x-1}{2^x-1}$
- 7. $\lim_{x\to+\infty}\frac{(\ln(x))^2}{x}$
- 8. $\lim_{x\to 0} x^3 (\ln(x))^2$
- 9. $\lim_{x\to+\infty} \frac{\ln(4x^2-3x+2)}{\ln(7x^2+3x-4)}$

Dérivées multiples

- 1. si f est dérivable sur]a, b[, on a f';
- 2. f' peut être dérivable aussi sur]a,b[, on a alors f'', ou $f^{(2)}$ ou D^2f ;
- 3. Plus généralement : $f^{(n)} = (f^{(n-1)})'$

Propriétés : ce sont des dérivées, donc on a

$$(kf)^{(2)} = kf^{(2)},$$

 $(fg)^{(2)} = f^{(2)}g + 2f'g' + fg^{(2)},$

ou plus généralement la formule de Leibniz :

$$(fg)^{(n)} = \sum_{p=0}^{n} C_n^p f^{(n-p)} g^{(p)}.$$

Développement de Taylor

L'idée : approcher une fonction compliquée par une fonction simple (polynomiale), au voisinage d'un point x_0 , et maîtriser l'erreur.

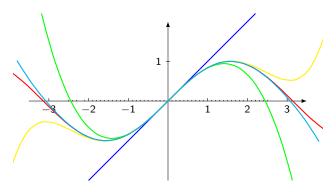


FIGURE - La fonction sinus et ses approximations en 0.

Deux cas connus et une définition

Approximation à l'ordre 0 : C'est le théorème de Lagrange (TAF) :

$$f(x) = \underbrace{f(x_0)}_{P_0(x)} + \underbrace{(x - x_0)f'(u)}_{R_0(x)}$$

où u est compris strictement entre x_0 et x. On a $\lim_{x\to x_0} R_0(x) = 0$.

Approximation à l'ordre 1 : C'est la définition de la tangente :

$$f(x) = \underbrace{f(x_0) + (x - x_0)f'(x_0)}_{P_1(x)} + R_1(x).$$

Le reste devrait "se comporter en $(x-x_0)^2$ ". On a $\lim_{x\to x_0} \frac{R_1(x)}{x-x_0} = 0$.

Définition

Soit une fonction f définie sur [a, b] et $x_0 \in]a, b[$. Un polynôme P_n de degré inférieur ou égal à n est une approximation de f à l'ordre n en x_0 si

$$\lim_{x\to x_0}\frac{R_n(x)}{(x-x_0)^n}=0.$$

32 où $R_n(x) = f(x) - P_n(x)$ est le reste de l'approximation.

Une idée intuitive pour la construction

Si on dérive le développement à l'ordre 1, on obtient

$$f'(x) = f'(x_0) + R'_1(x).$$

Par continuité de f' c'est le développement à l'ordre 0. D'où l'idée : obtenir le développement à l'ordre n+1 en primitivant celui à l'ordre n.

- **Données :** f deux fois dérivable sur $]a, b[, x_0 \in]a, b[, x \in]a, b[, x > x_0.$
- **Développement à l'ordre 1 :** Pour $t \in]x_0; x]$, il existe $u \in]x_0; t[$:

$$f'(t) = f'(x_0) + (t - x_0)f''(uu(t)).$$

- On peut rendre $t \mapsto f''(u(t))$ continue sur $[x_0; x]$, elle admet donc un minimum (resp. maximum) m (resp. M).
- On primitive : (on calcule la primitive qui s'annule en x_0).

$$f(x) - f(x_0) = (x - x_0)f'(x_0) + \underbrace{\int_{x_0}^{x} (t - x_0)f''(u(t)) dt}_{R_1(x)}.$$

On a

$$m\frac{(x-x_0)^2}{2} \leqslant R_1(x) \leqslant M\frac{(x-x_0)^2}{2}.$$

Université de Liège, Faculté des Sciences, Département de Mathématique.

Le théorème

On a donc

$$m\leqslant \frac{2R_1(x)}{(x-x_0)^2}\leqslant M.$$

Par le Théorème des Valeurs Intermédiraires, il existe $t_1 \in [x_0, x]$ tel que

$$\frac{2R_1(x)}{(x-x_0)^2} = f''(u(t_1)), \quad \text{donc} \quad R_1(x) = \frac{(x-x_0)^2}{2} f''(u(t_1))$$

On constate aussi que $u_1 = u(t_1) \in]x_0, t_1[\subset]x_0; x[$.

Proposition (Développement de Taylor ¹ limité)

Soit f une fonction n+1 fois dérivable sur]a,b[et $x_0 \in]a,b[$. Pour tout $x \in]a,b[$, $x \neq x_0$, il existe u compris strictement entre x et x_0 tel que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(u).$$

1. Brook Taylor (1685-1731)

Développement de Taylor

Proposition (Développement de Taylor)

Soit f une fonction n+1 fois dérivable sur]a, b[. Pour tout $x_0 \in$]a, b[, le polynôme défini par

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

est l'approximation à l'ordre n de f en x_0 .

- En x₀ = 0, l'approximation est appelée développement de Mac-Laurin.
- 2. Le graphe de l'approximation à l'ordre 2, si $f''(x_0) \neq 0$, est la parabole osculatrice au graphe de f en $(x_0, f(x_0))$.

Exemple

On cherche le développement à l'ordre 4 de cos en 0. On calcule les dérivées successives :

•
$$f(x) = \cos(x)$$

$$D^1 \cos(x) = -\sin(x)$$

$$D^2 \cos(x) = -\cos(x)$$

•
$$D^3 \cos(x) = \sin(x)$$

•
$$D^4 \cos(x) = \cos(x)$$

•
$$cos(0) = 1$$

•
$$D\cos(0) = 0$$

•
$$D^2 \cos(0) = -1$$

•
$$D^3 \cos(0) = 0$$

•
$$D^4 \cos(x) = 1$$

Le développement est donc

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + R_4(x),$$

Et le reste peut s'exprimer par $R_4(x) = \frac{x^5}{5!}(-\sin u)$, pour un u compris entre 0 et x. Comme $|\sin(u)| \leq 1$,

$$|R_4(x)| \leqslant \frac{|x|^5}{51}$$

et par exemple $\cos(1) \sim 1 - 1/2 + 1/24 \stackrel{\smile}{=} 0,5416$ avec une erreur d'au plus 1/120.

Une application théorique

Proposition (Critère de la dérivée seconde)

Soit f une fonction deux fois continûment dérivable sur]a,b[. Soit x_0 un point stationnaire de f tel que $f''(x_0) > 0$ (resp. < 0). Alors f admet un minimum (resp. maximum) strict local en x_0 .

On a en effet

$$f(x) = f(x_0) + \underbrace{f'(x_0)}_{=0}(x - x_0) + \underbrace{\frac{(x - x_0)^2}{2}}_{>0}\underbrace{f''(u)}_{>0},$$

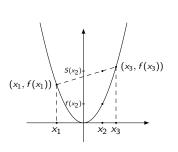
si x est assez proche de x_0 .

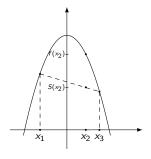
Pour se rappeler ce résultat, penser aux fonctions $f: x \mapsto x^2$ en $x_0 = 0$ et $f: x \mapsto -x^2$ en $x_0 = 0$.

Et pour finir, un mot sur la concavité

Un fonction convexe

Une fonction concave





$$f(x_2) \leqslant S(x_2)$$

$$f(x_2) \geqslant S(x_2)$$

$$f(x_2) \leqslant f(x_1) + \frac{f(x_3) - f(x_1)}{x_3 - x_1} (x_2 - x_1)$$

$$f(x_2) \leqslant f(x_3) + \frac{f(x_3) - f(x_1)}{x_3 - x_1} (x_2 - x_3)$$

Définition formelle et caractérisation

Définition

Soit f une fonction définie sur un intervalle ouvert]a,b[.

- 1. f est convexe sur I si pour tous $x_1 \leqslant x_2 \leqslant x_3 \in I$, $f(x_2) \leqslant S(x_2)$, où S est l'unique fonction du premier degré telle que $f(x_1) = S(x_1)$ et $f(x_3) = S(x_3)$.
- 2. f est concave sur I si, avec les mêmes notations, on a $f(x_2) \ge S(x_2)$.

Proposition

Soit f une fonction dérivable sur]a, b[. Alors f est convexe sur]a, b[si, et seulement si f' est croissant sur]a, b[.

Proposition

Soit f une fonction deux fois dérivable sur]a,b[. Alors f est convexe sur]a,b[si et seulement si $f''(x)\geqslant 0$ pour tout $x\in]a,b[$.