

Mathématique

Les dérivées

Pierre Mathonet

Département de Mathématique Faculté des Sciences

Liège, automne 2019

Les dérivées : objectifs et moyens

Intérêts de la notion de dérivée (entre autres) :

- 1 Etudier des propriétés de régularité de fonctions;
- 2 Etudier les variations locales des fonctions;
- 3 Problèmes d'optimisation, approximations;
- 4 Modélisation de phénomènes au moyen d'équations différentielles.

Les dérivées : objectifs et moyens

Intérêts de la notion de dérivée (entre autres) :

- 1 Etudier des propriétés de régularité de fonctions;
- 2 Etudier les variations locales des fonctions;
- 3 Problèmes d'optimisation, approximations;
- 4 Modélisation de phénomènes au moyen d'équations différentielles.

Pour y parvenir :

Les dérivées : objectifs et moyens

Intérêts de la notion de dérivée (entre autres) :

- 1 Etudier des propriétés de régularité de fonctions;
- 2 Etudier les variations locales des fonctions;
- 3 Problèmes d'optimisation, approximations;
- 4 Modélisation de phénomènes au moyen d'équations différentielles.

Pour y parvenir :

- Définitions des dérivées, des tangentes, approximation linéaire, différentielle, ...;
- Quelques théorèmes (Théorème de Rolle, des accroissements finis...);
- 3 Quelques règles de calcul.

Le taux de variation moyen entre x_0 et u

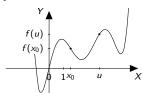
Soient f une fonction de \mathbb{R} dans \mathbb{R} et x_0 un point de dom_f .

Définition

Pour $u \in \text{dom}_f$ ($u \neq x_0$), le taux de variation moyen (encore appelé taux d'accroissement moyen) de f entre x_0 et u est

$$A_{x_0}(u) = \frac{f(u) - f(x_0)}{u - x_0}.$$

Cas pratique : Si f(x) est la position d'un mobile au temps x, $A_{x_0}(u)$ est la vitesse moyenne entre x_0 et u.



Le taux de variation moyen entre x_0 et u

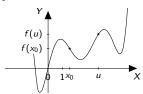
Soient f une fonction de \mathbb{R} dans \mathbb{R} et x_0 un point de dom_f .

Définition

Pour $u \in \text{dom}_f$ ($u \neq x_0$), le taux de variation moyen (encore appelé taux d'accroissement moyen) de f entre x_0 et u est

$$A_{x_0}(u) = \frac{f(u) - f(x_0)}{u - x_0}.$$

Cas pratique : Si f(x) est la position d'un mobile au temps x, $A_{x_0}(u)$ est la vitesse moyenne entre x_0 et u.



3

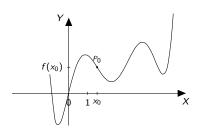
Notation en sciences $\frac{\Delta f}{\Delta x}$. Notation complète : $\frac{\Delta f}{\Delta x}(x_0, u)$.

La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$

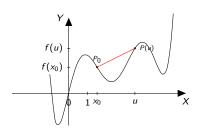
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



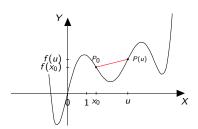
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



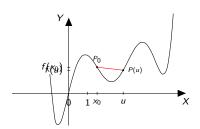
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



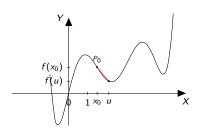
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



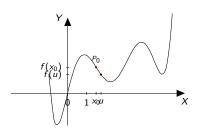
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



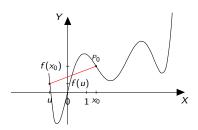
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



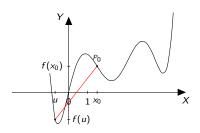
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



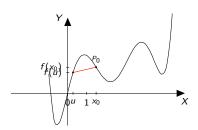
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



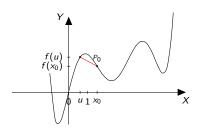
La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

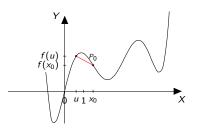
$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



La droite déterminée par $P_0: (x_0, f(x_0))$ et P(u): (u, f(u)) est appelée sécante au graphe de f, déterminée par ces points.

Le nombre $A_{x_0}(u)$ est la pente de cette droite, qui a donc pour équation

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$

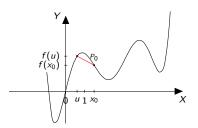


Que se passe-t-il si $P(u) = P_0$, i.e. si $u = x_0$?

La droite déterminée par $P_0:(x_0,f(x_0))$ et P(u):(u,f(u)) est appelée sécante au graphe de f, déterminée par ces points.

Le nombre $A_{x_0}(u)$ est la pente de cette droite, qui a donc pour équation

$$y - f(x_0) = A_{x_0}(u)(x - x_0).$$



Que se passe-t-il si $P(u) = P_0$, i.e. si $u = x_0$? Que se passe-t-il quand u tend vers x_0 ?

Nous cherchons un *taux de variation instantané* en x_0 , c'est à dire le comportement du taux A_{x_0} au voisinage de x_0 . Nous considérons donc naturellement la limite pour u tendant vers x_0 du taux de variation A_{x_0} .

Nous cherchons un *taux de variation instantané* en x_0 , c'est à dire le comportement du taux A_{x_0} au voisinage de x_0 . Nous considérons donc naturellement la limite pour u tendant vers x_0 du taux de variation A_{x_0} .

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et $x_0 \in \mathrm{dom}_f$. On dit que f est dérivable en x_0 si la limite

$$\lim_{u\to x_0}\frac{f(u)-f(x_0)}{u-x_0}$$

existe et est finie. Si tel est le cas, le nombre dérivé de f en x_0 est la valeur de cette limite. On le note $Df(x_0)$ ou $f'(x_0)$, ou $\frac{df}{dx}(x_0)$.

Nous cherchons un *taux de variation instantané* en x_0 , c'est à dire le comportement du taux A_{x_0} au voisinage de x_0 . Nous considérons donc naturellement la limite pour u tendant vers x_0 du taux de variation A_{x_0} .

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et $x_0 \in \mathrm{dom}_f$. On dit que f est dérivable en x_0 si la limite

$$\lim_{u\to x_0}\frac{f(u)-f(x_0)}{u-x_0}$$

existe et est finie. Si tel est le cas, le nombre dérivé de f en x_0 est la valeur de cette limite. On le note $Df(x_0)$ ou $f'(x_0)$, ou $\frac{df}{dx}(x_0)$.

Remarque : nous supposerons que f est définie sur un voisinage de x_0 . Il suffit en fait que $x_0 \in \text{dom}_f$ soit adhérent à $\text{dom}_f \setminus \{x_0\}$.

Nous cherchons un *taux de variation instantané* en x_0 , c'est à dire le comportement du taux A_{x_0} au voisinage de x_0 . Nous considérons donc naturellement la limite pour u tendant vers x_0 du taux de variation A_{x_0} .

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et $x_0 \in \mathrm{dom}_f$. On dit que f est dérivable en x_0 si la limite

$$\lim_{u\to x_0}\frac{f(u)-f(x_0)}{u-x_0}$$

existe et est finie. Si tel est le cas, le nombre dérivé de f en x_0 est la valeur de cette limite. On le note $Df(x_0)$ ou $f'(x_0)$, ou $\frac{df}{dx}(x_0)$.

Remarque : nous supposerons que f est définie sur un voisinage de x_0 . Il suffit en fait que $x_0 \in \mathrm{dom}_f$ soit adhérent à $\mathrm{dom}_f \setminus \{x_0\}$.

Exemple : soit $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^2$ et $x_0 = 3$. On a

$$f'(3) = Df(3) = \lim_{u \to 3} \frac{u^2 - 9}{u - 3} = 6.$$

Contexte numérique

Contexte géométrique

Taux d'accroissement moyen entre x₀ et u

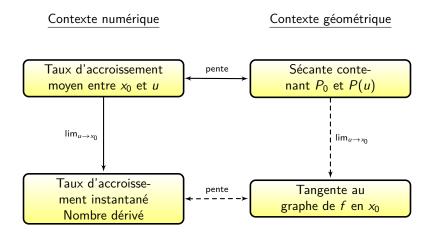
Sécante contenant P_0 et P(u)

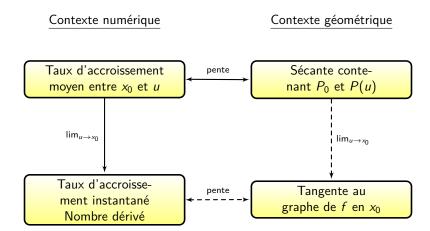
Taux d'accroissement instantané
Nombre dérivé

Contexte numérique Contexte géométrique Taux d'accroissement moyen entre x_0 et uSécante contenant P_0 et P(u)

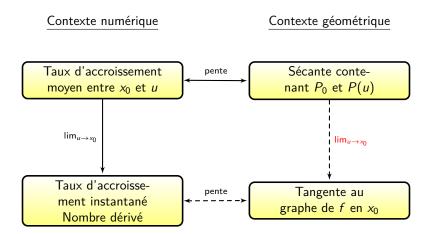
Taux d'accroissement instantané Nombre dérivé

Contexte numérique Contexte géométrique Taux d'accroissement pente Sécante contenant P_0 et P(u)moyen entre x_0 et u $\lim_{u\to x_0}$ Taux d'accroissement instantané Nombre dérivé





Tout le monde est d'accord?



Tout le monde est d'accord ? Alors comment définit-on la limite d'une fonction à valeurs dans l'ensemble de droites contenant P_0 ?

- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

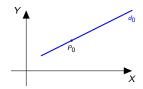
On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

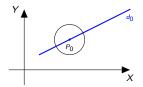


- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

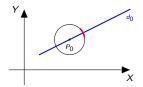


- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

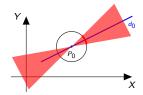


- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

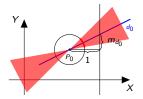


- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.



La limite des sécantes : une définition?

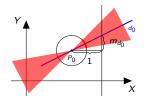
- Notons \mathcal{D}_0 l'ensemble des droites contenant P_0 .
- On se donne une "fonction" $d:A\to \mathcal{D}_0:u\mapsto d(u)$, où $A\subset \mathbb{R}$, et a adhérent à A. On veut définir $\lim_{u\to a}d(u)$.

On généralise la définition des limites avec des voisinages :

Définition

On a $\lim_{u\to a} d(u) = d_0$ ssi pour tout voisinage V_{d_0} de d_0 , il existe un voisinage V_a de a tel que pour tout $u\in \mathrm{dom}_d\cap V_a$, $d(u)\in V_{d_0}$.

Voisinage de d_0 ?



Conclusion : Un voisinage de d_0 est déterminé par un voisinage de sa pente m_{d_0} . Alors d(u) tend vers d_0 ssi la pente de d(u) tend vers la pente de d_0 .

Université de Liège, Faculté des Sciences, Département de Mathématique.

Tangente

La tangente au graphe en x_0 admet donc deux définitions équivalentes :

- La limite des sécantes quand u tend vers x_0 ;
- La droite passant par $(x_0, f(x_0))$ et de pente $f'(x_0) = Df(x_0)$.

Tangente

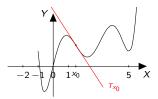
La tangente au graphe en x_0 admet donc deux définitions équivalentes :

- La limite des sécantes quand u tend vers x_0 ;
- La droite passant par $(x_0, f(x_0))$ et de pente $f'(x_0) = Df(x_0)$.

Définition

On appelle tangente au graphe de f au point de coordonnées $(x_0, f(x_0))$ la droite T_{x_0} d'équation

$$y = f(x_0) + Df(x_0)(x - x_0).$$



Approximation linéaire

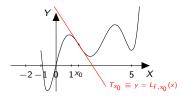
La droite T_{x_0} est le graphe d'une fonction L_{f,x_0} appelée approximation linéaire (ou affine, ou au premier ordre...) de f en x_0 . Plus précisément :

Définition

Soit f une fonction dérivable en $x_0 (\in \mathrm{dom}_f)$. L'approximation linéaire de f en x_0 est la fonction du premier degré définie par

$$L_{f,x_0}: \mathbb{R} \to \mathbb{R}: x \mapsto L_{f,x_0}(x) = f(x_0) + Df(x_0)(x - x_0).$$

Remarque : On note parfois L au lieu de L_{f,x_0} , mais c'est ambigu.



Exemples : Pour $f(x) = \sin(x)$, $L_{f,0}(x) = x$, et $L_{f,\frac{\pi}{2}}(x) = \frac{\pi}{2}$.

Qualité de l'approximation linéaire

La différence entre f(x) et $L_{f,x_0}(x)$ est le reste de l'approximation :

$$R_{f,x_0}(x) = f(x) - L_{f,x_0}(x).$$

On a, pour $x = x_0 + h$,

$$|R_{f,x_0}(x_0+h)| = |f(x_0+h) - L_{f,x_0}(x_0+h)| = |f(x_0+h) - f(x_0) - Df(x_0)h|.$$

Proposition

- $\lim_{h\to 0} |R_{f,x_0}(x_0+h)| = 0$. Même valeur en x_0 et continuité...
- $\lim_{h\to 0} \frac{|R_{f,x_0}(x_0+h)|}{|h|} = 0$. Le reste tend vers 0 plus vite que l'accroissement.

Quelques exemples

- La fonction $x : \mathbb{R} \to \mathbb{R} : t \to x(t) = t^2$ est dérivable en t_0 et on a $Dx(t_0) = 2t_0$ pour tout $t_0 \in \mathbb{R}$.
- La fonction $g:[0,+\infty[\to\mathbb{R}:y\mapsto\sqrt{y}]$ est dérivable en tout $x_0\in]0,+\infty[$ et on a $Dg(x_0)=\frac{1}{2\sqrt{x_0}}.$
- La fonction $\sin: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$ est dérivable en tout $x_0 \in \mathbb{R}$ et

$$\sin'(x_0) = \cos(x_0).$$

En effet, on a

$$\sin'(x_0) = \lim_{u \to x_0} \frac{\sin u - \sin x_0}{u - x_0} = \frac{2\sin(\frac{u - x_0}{2})\cos(\frac{u + x_0}{2})}{u - x_0}.$$

et

$$\lim_{u \to x_0} \frac{2\sin(\frac{u - x_0}{2})}{u - x_0} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1.$$

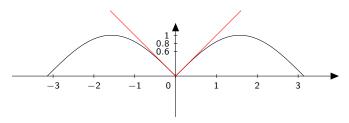
Un contre-exemple

La fonction

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto |\sin x|$$

n'est pas dérivable en $x_0=0$, puisque pour $x\in[0,\pi]$ elle coı̈ncide avec la fonction sin et pour $x\in[-\pi,0]$ avec la fonction $-\sin$, ce qui implique que la fonction A_0 définie par $A_0(t)=\frac{f(t)-f(0)}{t-0}$ pour tout $t\neq 0$ n'admet pas de limite en 0.

Voici une représentation graphique de ce phénomène :



Remarque : On pourrait définir des nombres dérivés à droite et à gauche et des demi-tengentes...

La fonction dérivée

Définition

Soit f une fonction. La fonction dérivée de f, notée f' ou Df, est la fonction

$$Df: \mathbb{R} \to \mathbb{R}: x \mapsto Df(x) = \lim_{u \to x} \frac{f(u) - f(x)}{u - x}.$$

Elle associe donc à chaque nombre x le nombre dérivé de f en x. Le domaine de dérivabilité de f est le domaine de définition de f', on le note parfois dom_f^d . Une fonction f est dérivable sur]a,b[si elle est dérivable en tout point de]a,b[.

Remarque: On peut définir la dérivabilité sur un intervalle fermé, mais nous n'utiliserons pas cette notion.

La fonction dérivée

Définition

Soit f une fonction. La fonction dérivée de f, notée f' ou Df, est la fonction

$$Df: \mathbb{R} \to \mathbb{R}: x \mapsto Df(x) = \lim_{u \to x} \frac{f(u) - f(x)}{u - x}.$$

Elle associe donc à chaque nombre x le nombre dérivé de f en x. Le domaine de dérivabilité de f est le domaine de définition de f', on le note parfois dom_f^d . Une fonction f est dérivable sur]a,b[si elle est dérivable en tout point de]a,b[.

Remarque: On peut définir la dérivabilité sur un intervalle fermé, mais nous n'utiliserons pas cette notion.

Connexion avec les sciences :

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$
:

si y est fonction de x, ce que l'on note y=y(x) où $\Delta y=y(x+h)-y(x)$ est la variation de la "variable" y quand on passe de x à x+h et

$$\Delta x = (x + h) - x$$
 est la variation de la "variable" x .

① $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto c$ est dérivable sur \mathbb{R} et on a $Df_1(x) = 0 \quad \forall x \in \mathbb{R}:$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

2 $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et $Df_2(x) = 1 \quad \forall x \in \mathbb{R}:$

$$Df_2(x) = \lim_{u \to x} \frac{f_2(u) - f_2(x)}{u - x} = \lim_{u \to x} \frac{u - x}{u - x} = 1.$$

1 $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto c$ est dérivable sur \mathbb{R} et on a $Df_1(x) = 0 \quad \forall x \in \mathbb{R}:$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

2 $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et $Df_2(x) = 1 \quad \forall x \in \mathbb{R}:$

$$Df_2(x) = \lim_{u \to x} \frac{f_2(u) - f_2(x)}{u - x} = \lim_{u \to x} \frac{u - x}{u - x} = 1.$$

3 $f_3: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ est dérivable sur \mathbb{R} et $Df_3: \mathbb{R} \to \mathbb{R}: x \mapsto 2x$.

1 $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto c$ est dérivable sur \mathbb{R} et on a $Df_1(x) = 0 \quad \forall x \in \mathbb{R}:$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

2 $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et $Df_2(x) = 1 \quad \forall x \in \mathbb{R}:$

$$Df_2(x) = \lim_{u \to x} \frac{f_2(u) - f_2(x)}{u - x} = \lim_{u \to x} \frac{u - x}{u - x} = 1.$$

- **3** $f_3: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ est dérivable sur \mathbb{R} et $Df_3: \mathbb{R} \to \mathbb{R}: x \mapsto 2x$.
- 4 $f_4: [0, +\infty[\to \mathbb{R} : x \mapsto \sqrt{x} \text{ est dérivable sur }]0, +\infty[$ et on a

$$Df_4: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{2\sqrt{x}}$$

car pour tout x strictement positif:

$$Df_4(x) = \lim_{u \to x} \frac{f_4(u) - f_4(x)}{u - x} = \lim_{u \to x} \frac{\sqrt{u} - \sqrt{x}}{u - x} = \lim_{u \to x} \frac{1}{\sqrt{u} + \sqrt{x}}.$$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

2 $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et $Df_2(x) = 1 \quad \forall x \in \mathbb{R}:$

$$Df_2(x) = \lim_{u \to x} \frac{f_2(u) - f_2(x)}{u - x} = \lim_{u \to x} \frac{u - x}{u - x} = 1.$$

- 3 $f_3: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ est dérivable sur \mathbb{R} et $Df_3: \mathbb{R} \to \mathbb{R}: x \mapsto 2x$.
- 4 $f_4: [0, +\infty[\to \mathbb{R} : x \mapsto \sqrt{x} \text{ est dérivable sur }]0, +\infty[$ et on a

$$Df_4: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{2\sqrt{x}}$$

car pour tout x strictement positif:

$$Df_4(x) = \lim_{u \to x} \frac{f_4(u) - f_4(x)}{u - x} = \lim_{u \to x} \frac{\sqrt{u} - \sqrt{x}}{u - x} = \lim_{u \to x} \frac{1}{\sqrt{u} + \sqrt{x}}.$$

5 La fonction sin est dérivable sur \mathbb{R} et $\sin'(x) = \cos x \quad \forall x \in \mathbb{R}$.

1 $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto c$ est dérivable sur \mathbb{R} et on a $Df_1(x) = 0 \quad \forall x \in \mathbb{R}:$

$$\lim_{u\to x}\frac{f_1(u)-f_1(x)}{u-x}=0.$$

2 $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et $Df_2(x) = 1 \quad \forall x \in \mathbb{R}:$

$$Df_2(x) = \lim_{u \to x} \frac{f_2(u) - f_2(x)}{u - x} = \lim_{u \to x} \frac{u - x}{u - x} = 1.$$

- **3** $f_3: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ est dérivable sur \mathbb{R} et $Df_3: \mathbb{R} \to \mathbb{R}: x \mapsto 2x$.
- 4 $f_4: [0, +\infty[\to \mathbb{R} : x \mapsto \sqrt{x} \text{ est dérivable sur }]0, +\infty[$ et on a

$$Df_4: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{2\sqrt{x}}$$

car pour tout x strictement positif:

$$Df_4(x) = \lim_{u \to x} \frac{f_4(u) - f_4(x)}{u - x} = \lim_{u \to x} \frac{\sqrt{u} - \sqrt{x}}{u - x} = \lim_{u \to x} \frac{1}{\sqrt{u} + \sqrt{x}}.$$

- **5** La fonction sin est dérivable sur \mathbb{R} et $\sin'(x) = \cos x \quad \forall x \in \mathbb{R}$.
- **6** La fonction cos est dérivable sur \mathbb{R} et $\cos'(x) = -\sin x \quad \forall x \in \mathbb{R}$.

Proposition

Si f est dérivable en x_0 , alors f est continue en x_0 .

Proposition

Si f est dérivable en x_0 , alors f est continue en x_0 .

Preuve : On démontre $\lim_{x \to x_0} f(x) = f(x_0)$ ou $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$:

Proposition

Si f est dérivable en x_0 , alors f est continue en x_0 .

Preuve : On démontre $\lim_{x\to x_0}f(x)=f(x_0)$ ou $\lim_{x\to x_0}(f(x)-f(x_0))=0$: Si $x\in \mathrm{dom}_f\setminus\{x_0\}$, on a

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0),$$

Proposition

Si f est dérivable en x_0 , alors f est continue en x_0 .

Preuve : On démontre $\lim_{x \to x_0} f(x) = f(x_0)$ ou $\lim_{x \to x_0} (f(x) - f(x_0)) = 0$:

Si $x \in \mathrm{dom}_f \setminus \{x_0\}$, on a

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0),$$

donc

$$\lim_{x \to x_0, x \neq x_0} (f(x) - f(x_0)) = \lim_{x \to x_0, x \neq x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$
$$= f'(x_0) \lim_{x \to x_0, x \neq x_0} (x - x_0) = 0.$$

On a donc $\lim_{x\to x_0, x\neq x_0} (f(x)-f(x_0))=0$ et on conclut puisque $f(x)-f(x_0)$ s'annule aussi en x_0 .

Règles de calcul I

Proposition

Soient f et g deux fonctions dérivables en sur l'intervalle a, b et $c \in \mathbb{R}$.

1 La fonction f + g est dérivable sur a, b et on a

$$(f+g)'=f'+g'.$$

2 La fonction f g est dérivable sur]a, b[et on a (la règle de Leibniz)

$$(f g)' = (f')g + f(g').$$

En particulier, on a aussi, pour tout $c \in \mathbb{R}$,

$$(cf)' = c f'.$$

3 Si $g(x) \neq 0$, alors la fonction $\frac{f}{g}$ est dérivable en x et on a

$$D\left(\frac{f}{g}\right)(x) = \frac{Df(x)g(x) - Dg(x)f(x)}{g(x)^2}.$$

Les preuves :

• Pour la somme, on a

$$\lim_{u \to x} \frac{(f+g)(u) - (f+g)(x)}{u - x} = \lim_{u \to x} \frac{(f(u) + g(u) - (f(x) + g(x))}{u - x}$$
$$= \lim_{u \to x} \left[\frac{f(u) - f(x)}{u - x} + \frac{g(u) - g(x)}{u - x} \right],$$

Les preuves :

Pour la somme, on a

$$\lim_{u \to x} \frac{(f+g)(u) - (f+g)(x)}{u - x} = \lim_{u \to x} \frac{(f(u) + g(u) - (f(x) + g(x))}{u - x}$$
$$= \lim_{u \to x} \left[\frac{f(u) - f(x)}{u - x} + \frac{g(u) - g(x)}{u - x} \right],$$

Pour le produit, on a

$$\lim_{u \to x} \frac{(fg)(u) - (fg)(x)}{u - x} = \lim_{u \to x} \frac{(f(u) - f(x))g(u) + f(x)(g(u) - g(x))}{u - x}$$

$$= \lim_{u \to x} \left[\frac{(f(u) - f(x))g(u)}{u - x} + \frac{f(x)(g(u) - g(x))}{u - x} \right],$$

et on utilise la continuité de g en x.

Les preuves :

Pour la somme, on a

$$\lim_{u \to x} \frac{(f+g)(u) - (f+g)(x)}{u - x} = \lim_{u \to x} \frac{(f(u) + g(u) - (f(x) + g(x))}{u - x}$$
$$= \lim_{u \to x} \left[\frac{f(u) - f(x)}{u - x} + \frac{g(u) - g(x)}{u - x} \right],$$

Pour le produit, on a

$$\lim_{u \to x} \frac{(fg)(u) - (fg)(x)}{u - x} = \lim_{u \to x} \frac{(f(u) - f(x))g(u) + f(x)(g(u) - g(x))}{u - x}$$

$$= \lim_{u \to x} \left[\frac{(f(u) - f(x))g(u)}{u - x} + \frac{f(x)(g(u) - g(x))}{u - x} \right],$$

et on utilise la continuité de g en x.

• Pour le quotient, il suffit de connaître la dérivée en le nombre x de $\frac{1}{g}$. Si $g(x) \neq 0$, alors g ne s'annule pas sur un voisinage de x et on a

$$\lim_{u \to x} \left(\frac{\frac{1}{g}(u) - \frac{1}{g}(x)}{u - x} \right) = \lim_{u \to x} \left(\frac{\frac{1}{g(u)} - \frac{1}{g(x)}}{u - x} \right) = \lim_{u \to x} \left(-\frac{g(u) - g(x)}{g(x)g(u)(u - x)} \right) = -\frac{g'(x)}{g(x)^2}.$$

1 Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;

- ① Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$:

- **1** Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$:
- **3** Pour toute fonction polynôme P définie par $P(x) = a_m x^m + \cdots + a_0$ $(x \in \mathbb{R})$, on a $P'(x) = ma_m x^{m-1} + \cdots + a_1$;

- **1** Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$:
- **3** Pour toute fonction polynôme P définie par $P(x) = a_m x^m + \cdots + a_0$ $(x \in \mathbb{R})$, on a $P'(x) = ma_m x^{m-1} + \cdots + a_1$;
- 4 Soit $f_3: \mathbb{R}_0 \to \mathbb{R}: x \mapsto \frac{1}{x}$. Par le résultat sur les quotients, f_3 est dérivable sur \mathbb{R}_0 et on a $Df_3(x) = -\frac{1}{x^2}$ pour tout $x \in \mathbb{R}_0$.

- **1** Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$:
- **3** Pour toute fonction polynôme P définie par $P(x) = a_m x^m + \cdots + a_0$ $(x \in \mathbb{R})$, on a $P'(x) = ma_m x^{m-1} + \cdots + a_1$;
- 4 Soit $f_3: \mathbb{R}_0 \to \mathbb{R}: x \mapsto \frac{1}{x}$. Par le résultat sur les quotients, f_3 est dérivable sur \mathbb{R}_0 et on a $Df_3(x) = -\frac{1}{\sqrt{2}}$ pour tout $x \in \mathbb{R}_0$.
- **5** On peut montrer que pour tout entier *positif m*, la fonction $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{x^m}$ est dérivable sur \mathbb{R}_0 et qu'on a $Dg_m(x) = -\frac{m}{x^{m+1}}$ pour tout $x \in \mathbb{R}_0$;

- **1** Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$;
- **3** Pour toute fonction polynôme P définie par $P(x) = a_m x^m + \cdots + a_0$ $(x \in \mathbb{R})$, on a $P'(x) = ma_m x^{m-1} + \cdots + a_1$;
- 4 Soit $f_3: \mathbb{R}_0 \to \mathbb{R}: x \mapsto \frac{1}{x}$. Par le résultat sur les quotients, f_3 est dérivable sur \mathbb{R}_0 et on a $Df_3(x) = -\frac{1}{x^2}$ pour tout $x \in \mathbb{R}_0$.
- **6** On peut montrer que pour tout entier *positif m*, la fonction $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{x^m}$ est dérivable sur \mathbb{R}_0 et qu'on a $Dg_m(x) = -\frac{m}{x^{m+1}}$ pour tout $x \in \mathbb{R}_0$:
- 6 De manière plus générale, toute fraction rationnelle est dérivable sur son domaine de définition.

- ① Nous avons vu que la fonction identique $f_1: \mathbb{R} \to \mathbb{R}: x \mapsto x$ est dérivable sur \mathbb{R} et sa dérivée vaut 1. D'après la proposition précédente, on peut montrer que $f_2: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 = xx$ est dérivable et que $f_2'(x) = 2x$;
- ② Par récurrence, on montre alors que pour tout entier positif m, $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto x^m$ est dérivable et qu'on a $g_m'(x) = mx^{m-1}$ pour tout $x \in \mathbb{R}$:
- **3** Pour toute fonction polynôme P définie par $P(x) = a_m x^m + \cdots + a_0$ $(x \in \mathbb{R})$, on a $P'(x) = ma_m x^{m-1} + \cdots + a_1$;
- 4 Soit $f_3: \mathbb{R}_0 \to \mathbb{R}: x \mapsto \frac{1}{x}$. Par le résultat sur les quotients, f_3 est dérivable sur \mathbb{R}_0 et on a $Df_3(x) = -\frac{1}{x^2}$ pour tout $x \in \mathbb{R}_0$.
- **6** On peut montrer que pour tout entier *positif m*, la fonction $g_m: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{x^m}$ est dérivable sur \mathbb{R}_0 et qu'on a $Dg_m(x) = -\frac{m}{x^{m+1}}$ pour tout $x \in \mathbb{R}_0$:
- Oe manière plus générale, toute fraction rationnelle est dérivable sur son domaine de définition.
- ② La fonction $f_4: \mathbb{R} \to \mathbb{R}: x \mapsto 3x + x^2 \sin^2(x)$ est dérivable sur \mathbb{R} et on a $Df_4(x) = 3 + (x^2)' \sin^2 x + x^2 (\sin(x) \sin(x))' = 3 + 2x \sin^2 x + 2x^2 \sin(x) \cos(x)$, pour tout $x \in \mathbb{R}$, vu la règle concernant les sommes et les produits.

Dérivées et fonctions composées

Proposition

Soit g une fonction dérivable sur un intervalle I et f une fonction dérivable sur un intervalle contenant g(I). La fonction $f \circ g$ est dérivable sur I et on a

$$D(f \circ g)(x) = Df(g(x))Dg(x), \quad \forall x \in I$$

Dérivées et fonctions composées

Proposition

Soit g une fonction dérivable sur un intervalle I et f une fonction dérivable sur un intervalle contenant g(I). La fonction $f \circ g$ est dérivable sur I et on a

$$D(f \circ g)(x) = Df(g(x))Dg(x), \quad \forall x \in I$$

On peut encore écrire cette règle

$$(f\circ g)'=(f'\circ g)\cdot g', \quad \text{ou} \quad (f\circ g)'(x)=f'(g(x))\,g'(x), \quad \forall x\in I.$$

On voit encore

$$(f \circ g)'(x) = \frac{d(f \circ g)(x)}{dx} = \frac{df(y)}{dy}|_{y=g(x)} \frac{dg(x)}{dx},$$

ou encore

$$D(f \circ g)(x) = Df(y)|_{y=g(x)}Dg(x).$$

Dérivées et fonctions composées

Proposition

Soit g une fonction dérivable sur un intervalle I et f une fonction dérivable sur un intervalle contenant g(I). La fonction $f \circ g$ est dérivable sur I et on a

$$D(f \circ g)(x) = Df(g(x))Dg(x), \quad \forall x \in I$$

On peut encore écrire cette règle

$$(f \circ g)' = (f' \circ g) \cdot g', \quad \text{ou} \quad (f \circ g)'(x) = f'(g(x))g'(x), \quad \forall x \in I.$$

On voit encore

$$(f \circ g)'(x) = \frac{d(f \circ g)(x)}{dx} = \frac{df(y)}{dy}|_{y=g(x)} \frac{dg(x)}{dx},$$

ou encore

$$D(f \circ g)(x) = Df(y)|_{y=g(x)}Dg(x).$$

Remarque: En sciences, on écrit parfois y(x) = y(u(x)) et $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$.

Avec des notations un peu plus libres :

1 La fonction cos est dérivable sur $\mathbb R$ car on a $\cos(x) = \sin(\frac{\pi}{2} - x)$ sur $\mathbb R$. La dérivée de la fonction cos est donnée par

$$D\cos(x) = (\sin(\frac{\pi}{2} - x))' = \sin'(\frac{\pi}{2} - x)[\frac{\pi}{2} - x]' = -\sin(x).$$

Avec des notations un peu plus libres :

1 La fonction cos est dérivable sur $\mathbb R$ car on a $\cos(x) = \sin(\frac{\pi}{2} - x)$ sur $\mathbb R$. La dérivée de la fonction cos est donnée par

$$D\cos(x) = (\sin(\frac{\pi}{2} - x))' = \sin'(\frac{\pi}{2} - x)[\frac{\pi}{2} - x]' = -\sin(x).$$

2 La fonction tg est définie et continue et dérivable sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. On a

$$D\operatorname{tg}(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)};$$

Avec des notations un peu plus libres :

1 La fonction cos est dérivable sur $\mathbb R$ car on a $\cos(x) = \sin(\frac{\pi}{2} - x)$ sur $\mathbb R$. La dérivée de la fonction cos est donnée par

$$D\cos(x) = (\sin(\frac{\pi}{2} - x))' = \sin'(\frac{\pi}{2} - x)[\frac{\pi}{2} - x]' = -\sin(x).$$

2 La fonction tg est définie et continue et dérivable sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. On a

$$D\operatorname{tg}(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)};$$

3 De même, on a $\operatorname{Dcotg}(x) = \frac{-1}{\sin^2 x} \quad \forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$

Applications

Avec des notations un peu plus libres :

1 La fonction cos est dérivable sur $\mathbb R$ car on a $\cos(x) = \sin(\frac{\pi}{2} - x)$ sur $\mathbb R$. La dérivée de la fonction cos est donnée par

$$D\cos(x) = (\sin(\frac{\pi}{2} - x))' = \sin'(\frac{\pi}{2} - x)[\frac{\pi}{2} - x]' = -\sin(x).$$

2 La fonction tg est définie et continue et dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$. On a

$$D\operatorname{tg}(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)};$$

- 3 De même, on a $\operatorname{Dcotg}(x) = \frac{-1}{\sin^2 x}$ $\forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$
- **4** La fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x^3)$ est dérivable sur \mathbb{R} et sa dérivée vaut

$$f'(x) = D\sin(y)|_{y=x^3}D(x^3) = \cos(x^3)(3x^2) = 3x^2\cos(x^3).$$

Applications

Avec des notations un peu plus libres :

1 La fonction cos est dérivable sur $\mathbb R$ car on a $\cos(x) = \sin(\frac{\pi}{2} - x)$ sur $\mathbb R$. La dérivée de la fonction cos est donnée par

$$\frac{D\cos(x)}{\cos(x)} = (\sin(\frac{\pi}{2} - x))' = \sin'(\frac{\pi}{2} - x)[\frac{\pi}{2} - x]' = -\sin(x).$$

2 La fonction tg est définie et continue et dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$. On a

$$D\operatorname{tg}(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)};$$

- 3 De même, on a $\operatorname{Dcotg}(x) = \frac{-1}{\sin^2 x}$ $\forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}.$
- **4** La fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x^3)$ est dérivable sur \mathbb{R} et sa dérivée vaut

$$f'(x) = D\sin(y)|_{y=x^3}D(x^3) = \cos(x^3)(3x^2) = 3x^2\cos(x^3).$$

6 La fonction $f: \mathbb{R} \to \mathbb{R}: x \mapsto \cos(\sqrt{x^2 + 3})$ est dérivable sur \mathbb{R} et la fonction dérivée vaut $-\sin(\sqrt{x^2 + 3})\frac{1}{2\sqrt{x^2 + 3}}(2x)$, pour tout $x \in \mathbb{R}$.

3)
$$f(t) = 4t^2 + \frac{1}{t^3}$$

3)
$$f(t) = 4t^2 + \frac{1}{t^3}$$
 (somme, multiple, puissances)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1-2x)(1+6x)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1-2x)(1+6x) (produit, polynômes)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- $11) f(x) = \sin(x^3)$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

1)
$$f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2 \text{ et } x_0 = 1$$
;

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

Ex 3 Calculer l'approximation linéaire de

1) $f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2$ et $x_0 = 1$; L(1) = 3 et la pente vaut 6.

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

- 1) $f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2$ et $x_0 = 1$; L(1) = 3 et la pente vaut 6.
- 4) $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$ et $x_0 = 0$;

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

- 1) $f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2$ et $x_0 = 1$; L(1) = 3 et la pente vaut 6.
- 4) $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$ et $x_0 = 0$; L(0) = 0 et la pente vaut 1.

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

- 1) $f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2$ et $x_0 = 1$; L(1) = 3 et la pente vaut 6.
- 4) $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$ et $x_0 = 0$; L(0) = 0 et la pente vaut 1.
- 4 b) $f:]0; +\infty[\rightarrow \mathbb{R} : x \mapsto \sqrt{x} \text{ et } x_0 = 1;$

Ex 1 Calculer les dérivées de

- 3) $f(t) = 4t^2 + \frac{1}{t^3}$ (somme, multiple, puissances)
- 5) $f(x) = (x^2 4x + 3)^2$ (composée, polynôme)
- 8) f(x) = (1 2x)(1 + 6x) (produit, polynômes)
- 11) $f(x) = \sin(x^3)$ (composée)
- 11 b) $f(x) = \sin^3(x)$ (composée, attention à l'ordre)
- 11 c) $f(t) = \sqrt{x^2 + 3x + 1}$ (composée, polynôme)
- 11 d) $f(x) = \cos(\sqrt{x^2 + 1})$ (composée, 2 fois)
 - 16) $f(x) = x^2 \cos(\operatorname{tg}(x^2))$ (produit, composée 2 fois)
 - 22) $f(t) = \frac{(t^3+4t)}{(t^3-1)}$ (quotient, polynômes)
 - 26) $f(x) = \ln(x^2 + 2 + \sin(x))$ (composée)

- 1) $f: \mathbb{R} \to \mathbb{R}: x \mapsto 3x^2$ et $x_0 = 1$; L(1) = 3 et la pente vaut 6.
- 4) $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$ et $x_0 = 0$; L(0) = 0 et la pente vaut 1.
- 4 b) $f:]0; +\infty[\rightarrow \mathbb{R} : x \mapsto \sqrt{x} \text{ et } x_0 = 1; L(1) = 1 \text{ et la pente vaut } \frac{1}{2}.$

Exercices II

Soit la fonction f déf. sur \mathbb{R} par $f(t) = t^3 e^{2t}$. Que vaut f'?

$$f'(t) = 3t^2e^{2t}$$

2
$$f'(t) = 6t^2e^{2t}$$

$$(3) f'(t) = t^2(2t+3)e^{2t}$$

$$f'(t) = t^2(t+3)e^{2t}$$

Exercices II

Soit la fonction f déf. sur \mathbb{R} par $f(t) = t^3 e^{2t}$. Que vaut f'?

1
$$f'(t) = 3t^2e^{2t}$$

2
$$f'(t) = 6t^2e^{2t}$$

3
$$f'(t) = t^2(2t+3)e^{2t}$$

Soit f déf. sur $]0; +\infty[$ par $f(x) = 3x^2 \ln(x^4)$. Que vaut f'?

1
$$f'(x) = \frac{6}{x^3}$$

2
$$f'(x) = \frac{3}{2x^3}$$

3
$$f'(x) = 6x(4\ln(x) + 2)$$

4
$$f'(x) = 6x(\ln(x^4) + \frac{3}{x^2})$$

Exercices II

Soit la fonction f déf. sur \mathbb{R} par $f(t) = t^3 e^{2t}$. Que vaut f'?

1
$$f'(t) = 3t^2e^{2t}$$

2
$$f'(t) = 6t^2e^{2t}$$

3
$$f'(t) = t^2(2t+3)e^{2t}$$

$$f'(t) = t^2(t+3)e^{2t}$$

Soit f déf. sur $]0; +\infty[$ par $f(x) = 3x^2 \ln(x^4)$. Que vaut f'?

1
$$f'(x) = \frac{6}{x^3}$$

$$f'(x) = \frac{3}{2x^3}$$

3
$$f'(x) = 6x(4\ln(x) + 2)$$

$$f'(x) = 6x(\ln(x^4) + \frac{3}{x^2})$$

Soit f déf. sur \mathbb{R} par $f(x) = x^2 \cos(x^2)$. Que vaut f'?

1
$$f'(x) = 2x \cos(x^2) - x^2 \sin(x^2)$$
 3 $f'(x) = -2x \sin(2x)$

3
$$f'(x) = -2x \sin(2x)$$

2
$$f'(x) = 2x(\cos(x^2) - x^2\sin(x^2))$$
 4 $f'(x) = 2x(\cos(x^2) - \sin(x^2)) + x^2$

$$f'(x) = 2x(\cos(x^2) - \sin(x^2)) + x^2$$

Dérivées de fonctions réciproques

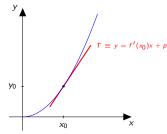
Proposition

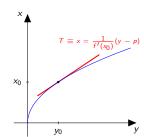
Soit $f: I =]a, b[\rightarrow J$ une bijection dérivable telle que pour tout $x \in]a, b[$ on a $Df(x) \neq 0$, alors $f^{-1}: J \rightarrow I$ est dérivable et on a

$$Df^{-1}(y) = \frac{1}{Df(x)}|_{x=f^{-1}(y)},$$

ou, écrit autrement : sur J, on a $(f^{-1})' = \frac{1}{f'} \circ f^{-1}$.

Explication géométrique :





23

Application : racines p-èmes

Proposition (Le cas pair)

Pour tout p pair, la fonction $\sqrt[p]{\cdot}$ est une application continue sur $[0,+\infty[$ et dérivable sur $]0,+\infty[$. On a de plus

$$D\sqrt[p]{x} = (\sqrt[p]{x})' = \frac{d\sqrt[p]{x}}{dx} = \frac{1}{p\sqrt[p]{x^{p-1}}} \quad \forall x \in]0, +\infty[.$$

Preuve : On considère la fonction $f:]0, +\infty[\to]0, +\infty[: x \mapsto y = f(x) = x^p$. Alors $f^{-1}(y) = \sqrt[p]{y}$, et

$$Df^{-1}(y) = \frac{1}{Df(x)}|_{x=f^{-1}(y)} = \frac{1}{\rho x^{p-1}}|_{x=\sqrt[p]{y}} = \frac{1}{\rho \sqrt[p]{y^{p-1}}} = \frac{1}{\rho \sqrt[p]{y^{p-1}}}.$$

Proposition (Le cas impair)

Pour tout p impair, la fonction $\sqrt[p]{\cdot}$ est une application continue sur $\mathbb R$ et dérivable sur $\mathbb R_0$. On a de plus

$$D\sqrt[p]{x} = (\sqrt[p]{x})' = \frac{d\sqrt[p]{x}}{dx} = \frac{1}{n\sqrt[p]{x^{p-1}}} \quad \forall x \in \mathbb{R}_0.$$

Extrema et points stationnaires

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Le point x_0 est un point stationnaire de f si on a $Df(x_0) = 0$.

Extrema et points stationnaires

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Le point x_0 est un point stationnaire de f si on a $Df(x_0) = 0$.

Proposition

Soit $f:]a, b[\to \mathbb{R}$ une fonction dérivable sur]a, b[, si f admet un extremum local en $x_0 \in]a, b[$, alors x_0 est un point stationnaire de f.

Extrema et points stationnaires

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Le point x_0 est un point stationnaire de f si on a $Df(x_0) = 0$.

Proposition

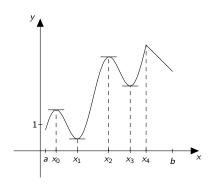
Soit $f:]a, b[\to \mathbb{R}$ une fonction dérivable sur]a, b[, si f admet un extremum local en $x_0 \in]a, b[$, alors x_0 est un point stationnaire de f.

Preuve:

- Supposons par exemple que f admette un minimum local en x₀ (un minimum sur l'intervalle I). On considère le taux d'accroissement A_{x0}(x) pour x > x₀ et x < x₀.
- On a $A_{x_0}(x) \ge 0$, $\forall x \in]x_0, b[\cap I]$, puisque $f(x) \ge f(x_0)$ pour tout x dans cet ensemble
- On a aussi $A_{x_0}(x) \leqslant 0 \, \forall x \in]a, x_0[\cap I.$
- Donc on a lim_{x→x₀,x>x₀} A_{x₀}(x) ≥ 0, et lim_{x→x₀,x<x₀} A_{x₀}(x) ≤ 0. Ces limites sont égales à la dérivée de f en x₀, qui doit donc être nulle.

Illustration

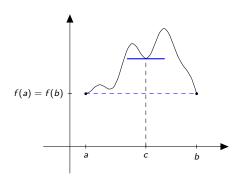
Voici la représentation graphique d'une fonction. On constate qu'en les extrema, si la tangente peut être visualisée, sa pente est nulle.



Le théorème de Rolle

Théorème (Michel Rolle (1652-1719))

Soient $a < b \in \mathbb{R}$ et f une fonction à valeurs dans \mathbb{R} continue sur [a,b] et dérivable sur [a,b], tel que f(a) = f(b). Il existe $c \in]a,b[$ tel que Df(c) = 0.



Le théorème des accroissements finis (TAF)

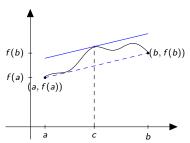
Théorème

Soient $a < b \in \mathbb{R}$ et f une fonction à valeurs dans \mathbb{R} continue sur [a, b] et dérivable sur [a, b]. Il existe $c \in [a, b]$ tel que

$$f(b) = f(a) + (b - a)Df(c),$$

i.e.,
$$Df(c) = \frac{f(b)-f(a)}{b-a}$$
.

Preuve : appliquer le thm de Rolle à $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$.



Dérivées et variations

Proposition

Soit f une fonction réelle dérivable sur un intervalle]a,b[de \mathbb{R} .

- **1** La fonction f est croissante (resp. décroissante) sur]a, b[si et seulement si f' est positive (resp. négative) sur]a, b[;
- Si f' est strictement positif (resp. négatif) sur]a, b[, alors f est strictement croissant (resp. décroissant) sur]a, b[.

La réciproque du deuxième point est fausse : $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^3$ est un contre-exemple.

Preuve:

• Si f est croissant, alors on a

$$\frac{f(u)-f(x)}{u-x}\geqslant 0,\quad \forall x\in \,]a,b[,\quad \forall u\neq x.$$

• Si f' est positive sur]a, b[, pour tous $x_1 < x_2 \in]a, b[$, on a (TAF)

$$f(x_2) = f(x_1) + (x_2 - x_1)Df(c), c \in]x_1, x_2[.$$

Ex. 10 Déterminer les intervalles sur lesquels la fonction

$$f:\mathbb{R}\to\mathbb{R}:x\mapsto\frac{1}{4}x^4-\frac{4}{3}x^3+\frac{3}{2}x^2+7$$
 est croissante.

Ex. 10 Déterminer les intervalles sur lesquels la fonction

$$f:\mathbb{R}\to\mathbb{R}:x\mapsto\frac{1}{4}x^4-\frac{4}{3}x^3+\frac{3}{2}x^2+7$$
 est croissante.

Etudier le signe de f'!

Ex. 10 Déterminer les intervalles sur lesquels la fonction

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{4}x^4 - \frac{4}{3}x^3 + \frac{3}{2}x^2 + 7$$

est croissante.

Etudier le signe de f'!

Exam Soit f une fonct. dérivable sur \mathbb{R}_0 t.q. $f'(x) = \frac{1}{1+x^{-4}}$. Parmi les propriétés suivantes, laquelle peut-on nécessairement déduire pour la fonction f?

$$f(0) = 0.$$

3
$$f(2) > f(10)$$

Ex. 10 Déterminer les intervalles sur lesquels la fonction

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{1}{4}x^4 - \frac{4}{3}x^3 + \frac{3}{2}x^2 + 7$$

est croissante.

Etudier le signe de f'!

- Exam Soit f une fonct. dérivable sur \mathbb{R}_0 t.q. $f'(x) = \frac{1}{1+x^{-4}}$. Parmi les propriétés suivantes, laquelle peut-on nécessairement déduire pour la fonction f?
 - f(0) = 0.

3 f(2) > f(10)

2 f(2) < f(10)

- 4 f est impaire
- Ex 28 Soit g une fonct. à valeurs strictement positives et strictement croissante sur \mathbb{R} . Parmi ces affirmations, laquelle est toujours vraie?
 - **1** $(\ln(g(x)))' > 0$ pour tout $x \in \mathbb{R}$
 - 2 $(\ln(g(x)))' \ge 0$ pour tout $x \in \mathbb{R}$
 - $(\ln(g(x)))' < 0 \text{ pour tout } x \in \mathbb{R}$
 - **4** $(\ln(g(x)))' \leq 0$ pour tout $x \in \mathbb{R}$

Derniers résultats

Proposition

Si f est dérivable sur]a, b[et si $Df \equiv 0$ sur]a, b[, alors f est constante sur]a, b[. En particulier, si f et g sont dérivables sur]a, b[et si Df = Dg sur]a, b[alors il existe $k \in \mathbb{R}$ tel que f = g + k sur]a, b[.

Preuve : Encore le TAF : $f(x_2) = f(x_1) + (x_2 - x_1)Df(c)$, $c \in]x_1, x_2[$.

Théorème (Fonction inverse)

Soit $f:]a, b[\to \mathbb{R}$ une fonction dérivable, telle que f' est strictement positive (resp. négative) sur]a, b[. Alors

- les limites $a' = \lim_{x \to a^+} f(x)$ et $b' = \lim_{x \to b^-} f(x)$ existent et sont différentes.
- 2 la fonction $f:]a, b[\rightarrow]a', b'[$ (resp.]b', a'[) définit une bijection.
- 3 la fonction réciproque f^{-1} est dérivable et on a (déjà vu que)

$$(f^{-1})'(x) = \frac{1}{f'(y)}|_{y=f^{-1}(x)}.$$

Pour terminer, un mot sur la différentielle

But : Donner un sens aux notations df et dx présentes dans les cours de sciences, sans utiliser d'"infinitésimaux".

- On regarde la propagation d'une erreur de mesure par une fonction f.
- On aurait dû mesurer x_0 , et on a mesuré $x_0 + h$, ou le contraire.
- L'erreur est h, et l'erreur propagée est $f(x_0 + h) f(x_0)$.

On a déjà fait le travail :

$$f(x_0 + h) = L_{f,x_0}(x_0 + h) + R_{f,x_0}(x_0 + h)$$

$$\Leftrightarrow f(x_0 + h) - f(x_0) = \underbrace{Df(x_0)h}_{\text{ordre 1 en h}} + \underbrace{R_{f,x_0}(x_0 + h)}_{\text{ordre supérieur}}$$

Pour terminer, un mot sur la différentielle

But : Donner un sens aux notations df et dx présentes dans les cours de sciences, sans utiliser d'"infinitésimaux".

- On regarde la propagation d'une erreur de mesure par une fonction f.
- On aurait dû mesurer x_0 , et on a mesuré $x_0 + h$, ou le contraire.
- L'erreur est h, et l'erreur propagée est $f(x_0 + h) f(x_0)$.

On a déjà fait le travail :

$$f(x_0 + h) = L_{f,x_0}(x_0 + h) + R_{f,x_0}(x_0 + h)$$

$$\Leftrightarrow f(x_0 + h) - f(x_0) = \underbrace{Df(x_0)h}_{\text{ordre 1 en h}} + \underbrace{R_{f,x_0}(x_0 + h)}_{\text{"ordre supérieur"}}$$

Définition

La différentielle de f au point x_0 , appliquée à l'accroissement h est définie par

$$\mathrm{d}f_{x_0}(h)=Df(x_0)h.$$

De la définition aux notations

Calcul de la différentielle de la fonction identique (f(x) = x):

$$\mathrm{d} x_{x_0}(h) = 1h = h.$$

Donc pour tout f:

$$\mathrm{d}f_{\mathsf{x}_0}(h) = Df(\mathsf{x}_0)\mathrm{d}\mathsf{x}_{\mathsf{x}_0}(h), \forall \mathsf{x}_0, h.$$

Puisque l'égalité est vraie pour tout h, on note

$$\mathrm{d}f_{x_0} = Df(x_0)\mathrm{d}x_{x_0}, \quad \forall x_0.$$

Mais aussi, puisque c'est vrai pour tout x_0

$$\mathrm{d}f(x) = Df(x)\mathrm{d}x$$

Cela explique aussi la notation

$$Df(x) = \frac{\mathrm{d}f(x)}{\mathrm{d}x}$$