

Espaces affines euclidiens

Pierre Mathonet

Présentation provisoire

Département de Mathématique Faculté des Sciences

Liège, le 17 avril 2013

Définitions :espaces affines, repères orthonormés

Définition 14.1

Un espace affine eucliden $\mathcal A$ (resp. orienté) est un espace affine modelé sur un espace vectoriel euclidien (resp. orienté).

Définition 14.2

Un repère orthonormé (resp. positif) est un repère $(O,(b_1,\ldots,b_n))$ tel que la base (b_1,\ldots,b_n) soit orthonormée (resp. positive).

Proposition 14.3

Les coordonnées d'un point P dans un repère orthonormé $(O,(b_1,\ldots,b_n))$ sont données par

$$P: (\langle \overrightarrow{OP}, b_1 \rangle, \ldots, \langle \overrightarrow{OP}, b_n \rangle)^{\sim}.$$

Distance euclidienne

Définition 14.4

La distance euclidienne du point P au point Q de \mathcal{A} , notée d(P,Q) est définie par

$$d(P,Q)=|\overrightarrow{PQ}|.$$

Proposition 14.5

On a

- $\mathbf{0}$ d(P,Q) = d(Q,P) pour tous $P,Q \in \mathcal{A}$;
- 2 $d(P,Q) \geqslant 0$ pour tous $P,Q \in A$ et d(P,P) = 0;
- 3 $d(P,Q) + d(Q,R) \ge d(P,R)$ pour tous $P, Q, R \in A$;
- 4 d(P,Q) = 0 si et seulement si P = Q.

Théorème de Pythagore et consorts, distances

Proposition 14.6

Soit un triangle A, B, C. On a alors

$$|\overrightarrow{AB}|^2 = |\overrightarrow{AC}|^2 + |\overrightarrow{CB}|^2 - 2|\overrightarrow{AC}||\overrightarrow{CB}|\cos\alpha$$

où α est l'angle non orienté entre \overrightarrow{CA} et \overrightarrow{CB} . En particulier, le triangle est rectangle en C si et seulement si on a

$$|\overrightarrow{AB}|^2 = |\overrightarrow{AC}|^2 + |\overrightarrow{CB}|^2.$$

Proposition 14.7

Si les coordonnées de P et Q dans un repère orthonormé sont $(p_1,\ldots,p_n)^\sim$ et $(q_1,\ldots,q_n)^\sim$, alors la distance d(P,Q) est donnée par

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$

P. Mathonet, Université de Liège, Faculté des Sciences, Département de Mathématique.

Variétés affines orthogonales

Définition 14.8

Les variétés affines $\mathcal V$ et $\mathcal V'$ sont orthogonales si leurs sous-espaces vectoriels directeurs $\overrightarrow{\mathcal V}$ et $\overrightarrow{\mathcal V'}$ sont orthogonaux. On note $\mathcal V \bot \mathcal V'$.

- Les droites $d=A+\rangle u\langle$ et $d'=A'+\rangle v\langle$ sont orthogonales si, et seulement si $\langle u,v\rangle=0$.
- Si $u:(u_1,\ldots,u_n)^{\sim}$ et $v:(v_1,\ldots,v_n)^{\sim}$ dans une base orthonormée, alors on a $d\perp d'$ si, et seulement si $u_1v_1+\cdots+u_nv_n=0$.
- En dimension 3, la droite $d=A+\rangle u\langle$ et le plan $\pi=B+\rangle v,w\langle$ sont orthogonaux si, et seulement si $\langle u,v\rangle=\langle u,w\rangle=0$.
- On a aussi $d \perp \pi$ si, et seulement si $\overrightarrow{d} = \overrightarrow{\pi}^{\perp}$.
- Si dans un repère orthonormé π ≡ a₁x₁ + a₂x₂ + a₃x₃ = b et u : (u₁, u₂, u₃)[~] (dans la base associée) alors on a d⊥π si et seulement si (u₁, u₂, u₃) est multiple de (a₁, a₂, a₃).
- En dimension 3, deux plans ne sont jamais orthogonaux.

Projections orthogonales

Proposition 14.9

Soit $\mathcal V$ une variété affine et $P\in\mathcal A$. Il existe un unique point $P'\in\mathcal V$ tel que $\overrightarrow{PP'}(\bot\overrightarrow{\mathcal V})$.

Preuve : décomposer \overrightarrow{AP} selon $\overrightarrow{\mathcal{V}}$ et $\overrightarrow{\mathcal{V}}^{\perp}$.

Définition 14.10

L'unique point P' défini par la proposition précédente est appelé projection orthogonale de P sur V. Il est noté $p_{\mathcal{V}}^{\perp}(P)$ ou $p_{\mathcal{V}}(P)$.

Proposition 14.11

La projection orthogonale de P sur $\mathcal V$ est l'unique point P' d'intersection des variétés affines orthogonales $\mathcal V$ et $P+\mathcal V^\perp$.

P. Mathonet, Université de Liège, Faculté des Sciences, Département de Mathématique.

Projection sur des droites et hyperplans

Proposition 14.12

Soit $d=A+\rangle u \langle$ et soit $P\in \mathcal{A}$. La projection orthogonale de P sur d est le point

$$P' = A + \frac{\langle \overrightarrow{AP}, u \rangle}{|u|^2} u.$$

Proposition 14.13

Soit π l'hyperplan déterminé par le point A et le vecteur normal n, c'est à dire

$$\pi = \{ Q \in \mathcal{A} : \langle \overrightarrow{AQ}, n \rangle = 0 \}$$

et $P \in A$. Alors on a

$$P'=P-\frac{\langle \overrightarrow{AP},n\rangle}{|n|^2}n.$$

P. Mathonet, Université de Liège, Faculté des Sciences, Département de Mathématique.