

Distances de variétés affines, angles de droites et plans

Présentation provisoire

Pierre Mathonet

Département de Mathématique Faculté des Sciences

Liège, le 27 mars 2014

Distance de deux ensembles

Définition 16.1

La distance entre deux sous-ensembles ${\mathcal P}$ et ${\mathcal Q}$ non vides de ${\mathcal A}$ est définie par

$$d(\mathcal{P},\mathcal{Q})=\inf\{d(P,Q):P\in\mathcal{P},Q\in\mathcal{Q}\}.$$

Rappels:

• La borne inférieure d'un ensemble (non vide) $\mathcal{E} \subset \mathbb{R}$ est un minorant de \mathcal{E} : on a

inf
$$\mathcal{E} \leqslant x \quad \forall x \in E$$
.

ullet Il n'y a pas de "meilleur" minorant de ${\mathcal E}$:

$$\forall y > \inf \mathcal{E}, \exists x \in \mathcal{E} : x < y.$$

- La borne inférieure inf \mathcal{E} est *réalisée* si inf $\mathcal{E} \in \mathcal{E}$.
- Par exemple inf [1,4] est réalisée, inf]2,4] ne l'est pas.

Un exemple graphique

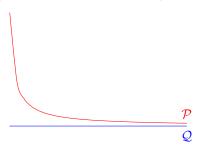
Dans un repère orthonormé, considérons le graphe ${\mathcal P}$ de la fonction

$$f:]0, +\infty[\to \mathbb{R}: x \mapsto \frac{1}{x},$$

et

$$Q = \{(x,0) : x \in]0, +\infty[\}.$$

On a $d(\mathcal{P}, \mathcal{Q}) = 0$, mais la distance n'est pas réalisée.



Le cas des variétés affines

Théorème 16.2

Soit V = A + F et V' = B + F' deux variétés affines. Il existe un unique vecteur $\overrightarrow{PP'}$ satisfaisant les conditions suivantes :

- **1** $P \in \mathcal{V}$ et $P' \in \mathcal{V}'$;
- 2 $\overrightarrow{PP'}$ \ est orthogonal \(\hat{a}\) \ F et \(\hat{a}\) \(F').

On a $\overrightarrow{PP'} = p_{(F+F')^{\perp}}(\overrightarrow{AB})$. La distance de \mathcal{V} et \mathcal{V}' vaut $|\overrightarrow{PP'}|$. Si $F \cap F' = \{0\}$, alors la distance est réalisée par un unique couple (P, P').

Preuve:

- Unicité : si $\overrightarrow{PP'}$ répond à la question, $\overrightarrow{AB} = (\overrightarrow{AP} + \overrightarrow{P'B}) + \overrightarrow{PP'}$, donc $\overrightarrow{PP'} = p_{(F+F')^{\perp}}(\overrightarrow{AB})$.
- Existence : $\overrightarrow{AB} = u_{F+F'} + u_{(F+F')^{\perp}} = u_F + u'_F + u_{(F+F')^{\perp}}$,
- Pour tous $X \in \mathcal{V}$ et $X' \in \mathcal{V}'$, on a alors

$$|\overrightarrow{XX'}|^2 = |\overrightarrow{XP} + \overrightarrow{PP'} + \overrightarrow{P'X'}|^2 = |\overrightarrow{PP'}|^2 + |\overrightarrow{XP} + \overrightarrow{P'X'}|^2 \geqslant |\overrightarrow{PP'}|^2.$$

Cas particulier 1 : un point et une variété affine

Corollaire 16.3

La distance d'un singleton $\{B\}$ à une variété affine $\mathcal V$ est réalisée : on a $d(B,\mathcal V)=d(B,B')$ où B' est la projection orthogonale de B sur $\mathcal V$. La distance est réalisée de manière unique.

Preuve : On a $F = \{0\}$. On a d(B, V) = d(P, P') où P = B, $P' \in V$ et $\overrightarrow{PP'}$ est orthogonal à \overrightarrow{V} .

Corollaire 16.4

Soient $\pi=A+\overrightarrow{\pi}$ un hyperplan, N une normale à cet hyperplan et $B\in\mathcal{A}$. Alors

$$d(B,\pi) = \frac{|\langle \overrightarrow{AB}, N \rangle|}{|N|}$$

En particulier, si dans un repère orthonormé π admet pour équation

$$\pi \equiv c_1 x_1 + \cdots + c_n x_n = b$$

et si
$$B:(p_1,\ldots,p_n)^{\sim}$$
, alors $d(P,\pi)=\frac{|c_1p_1+\cdots+c_np_n-b|}{\sqrt{c_1^2+\cdots+c_n^2}}.$

Cas particulier 2 : les droites

Corollaire 16.5

Soit $\mathcal D$ la droite déterminée par le point A et le vecteur directeur u et soit $B \in \mathcal A$. Alors on a

$$d(B,\mathcal{D}) = |\overrightarrow{AB}| \sin \alpha,$$

où α est l'angle non orienté entre \overrightarrow{AB} et u. En particulier, pour un espace affine euclidien de dimension 3, on a

$$d(P,\mathcal{D}) = \frac{|\overrightarrow{AB} \wedge u|}{|u|},$$

où le produit vectoriel est calculé dans une orientation quelconque.

Preuve : On calcule $\overrightarrow{PP'} = p_{\backslash u \backslash \perp}(\overrightarrow{AB}) = \overrightarrow{AB} - \frac{\langle \overrightarrow{AB}, u \rangle}{|u|^2}u$.

On a donc puisque $\overrightarrow{PP'} \perp u$,

$$|\overrightarrow{PP'}|^2 = |\overrightarrow{AB}|^2 - (\frac{\langle \overrightarrow{AB}, u \rangle}{|u|})^2 = |\overrightarrow{AB}|^2 - (|\overrightarrow{AB}|\cos(\alpha))^2.$$

P. Mathonet, Université de Liège, Faculté des Sciences, Département de Mathématique.

Droites et plans en dimension 2 et 3

Proposition 16.6

Si $\dim \mathcal{A}=2$, et si les droites \mathcal{D} et \mathcal{D}' sont sécantes, alors $d(\mathcal{D},\mathcal{D}')=0$. Si \mathcal{D} et \mathcal{D}' sont parallèles, alors on a $d(\mathcal{D},\mathcal{D}')=d(P,P')$ pour tout $P\in \mathcal{D}$, si P' est la projection de P sur \mathcal{D}' .

Proposition 16.7

Si $\dim \mathcal{A}=3$, et si π et π' sont sécants, alors $d(\pi,\pi')=0$. Si π et π' sont parallèles, alors on a $d(\pi,\pi')=d(P,P')$ pour tout $P\in\pi$, si P' est la projection de P sur π' .

Proposition 16.8

Si $\dim \mathcal{A}=3$, et si \mathcal{D} et π sont sécants, alors $d(\mathcal{D},\pi)=0$. Si \mathcal{D} et π sont parallèles, alors on a $d(\mathcal{D},\pi)=d(P,P')$ pour tout $P\in\mathcal{D}$, si P' est la projection de P sur π .

Droites en dimension 3

Le cas des droites sécantes ou parallèles est clair. Traitons celui des droites gauches.

Proposition 16.9

Les droites gauches $\mathcal{D}=A+\rangle u\langle$ et $\mathcal{D}'=B+\rangle u\langle$ on une distance égale à

$$d(\mathcal{D},\mathcal{D}') = \frac{|[\overrightarrow{AB}, u, u']|}{|u \wedge u'|}.$$

Il existe un unique couple de points $P \in \mathcal{D}$, $P' \in \mathcal{D}'$ tels que

$$d(P, P') = d(\mathcal{D}, \mathcal{D}').$$

Ces points déterminent la droite perpendiculaire commune à $\mathcal D$ et $\mathcal D'$.

Preuve : On projette \overrightarrow{AB} sur le complément orthogonal de $\rangle u \langle + \rangle v \langle = \rangle u$, $v \langle .$ C'est

$$\frac{\langle \overrightarrow{AB}, u \wedge v \rangle}{|u \wedge v|^2} u \wedge v = \frac{[\overrightarrow{AB}, u \, v]}{|u \wedge v|^2} u \wedge v.$$

0

Angles de droites et hyperplans

Définition 16.10

L'angle des droites $\mathcal{D}=A+\rangle u\langle$ et $\mathcal{D}'=A'+\rangle u'\langle$ est l'angle $\alpha\in[0,\frac{\pi}{2}]$ déterminé par

$$\cos(\alpha) = \frac{|\langle u, u' \rangle|}{|u||u'|}.$$

Définition 16.11

L'angle d'une droite $\mathcal D$ et d'un hyperplan π vaut $\beta=\frac{\pi}{2}-\alpha$ où α est l'angle entre $\mathcal D$ et une normale quelconque $\mathcal N$ à π . On a donc

$$\sin \beta = \frac{|\langle u, N \rangle|}{|u||N|},$$

où u est un vecteur directeur de \mathcal{D} et N une normale à π .

Angle de deux hyperplans

Définition 16.12

L'angle de deux hyperplans π et π' est l'angle α entre deux de leurs droites normales quelconques. On a donc

$$\cos(\alpha) = \frac{|\langle N, N' \rangle|}{|N||N'|}$$

où N et N' sont des normales à π et π' respectivement.