

Espaces vectoriels

Pierre Mathonet

Département de Mathématique Faculté des Sciences

Liège, le 6 Février 2013

Espaces vectoriels

Un espace vectoriel réel : un ensemble E non vide muni des opérations d'addition + et de multiplication scalaire \cdot t.q.

- **1** L'addition est interne : on $a + : E \times E \rightarrow E : (u, v) \mapsto u + v$, et la multiplication scalaire satisfait $: \mathbb{R} \times E \rightarrow E : (\lambda, x) \mapsto \lambda \cdot x$;
- \bigcirc + est associative : on a (u+v)+w=u+(v+w) pour tous $u,v,w\in E$;
- **3** + admet un élément neutre $0 \in E$ t.q. 0 + u = u + 0 = u pour tout $u \in E$;
- 4 Tout élément $u \in E$ admet un opposé -u pour l'addition, satisfaisant u + (-u) = (-u) + u = 0;
- **5** + est commutative : on a u + v = v + u pour tous $u, v \in E$;
- **6** La multiplication distribue l'addition des vecteurs : on a $a \cdot (u + v) = a \cdot u + a \cdot v$ pour tous $u, v \in E$ et $a \in \mathbb{R}$;
- ② La multiplication distribue l'addition des réels : on a $(a+b) \cdot u = a \cdot u + b \cdot u$ pour tous $a, b \in \mathbb{R}$ et $u \in E$;
- **8** On a $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$ pour tous $u \in E$ et $\lambda, \mu \in \mathbb{R}$;
- **9** On a $1 \cdot u = u$ pour tout $u \in E$.

Exemples exotiques I

1 L'ensemble $E=]0,+\infty[^2$ muni des opérations d'addition \oplus et de multiplication \odot définies par

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \oplus \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_2 y_2 \end{pmatrix}, \quad \forall x_1, x_2, y_1, y_2 \in]0, +\infty[, \qquad (1)$$

et

$$\lambda \odot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^{\lambda} \\ x_2^{\lambda} \end{pmatrix}, \quad \forall x_1, x_2 \in]0, +\infty[, \lambda \in \mathbb{R},$$
 (2)

est un espace vectoriel.

2 Soit $\mathcal{F}(\mathbb{R})$ l'ensemble des fonctions définies sur \mathbb{R} et à valeurs dans \mathbb{R} . On définit l'addition et la multiplication scalaire par

$$\begin{cases}
(f+g)(x) &= f(x)+g(x); \\
(\lambda f)(x) &= \lambda f(x);
\end{cases}, \forall x \in \mathbb{R}, \tag{3}$$

pour toutes fonctions f et g et tout $\lambda \in \mathbb{R}$.

Exemples exotiques II

3 Soit $\mathcal P$ l'ensemble des fonctions polynomiales de $\mathbb R$ dans $\mathbb R$: Une fonction polynomiale de $\mathbb R$ dans $\mathbb R$, de degré inférieur ou égal à n, est une fonction P telle qu'il existe des coefficients $c_0,\ldots,c_n\in\mathbb R$ satisfaisant

$$P(x) = c_n x^n + \cdots + c_1 x + c_0, \quad \forall x \in \mathbb{R}.$$

On peut démontrer que pour une telle fonction, les coefficients c_0, \ldots, c_n sont uniques. Une fonction est polynomiale, s'il existe $n \in \mathbb{N}$ tel qu'elle soit polynomiale de degré inférieur ou égal à n. La somme de ces fonctions et la multiplication scalaires sont définies par (3). Alors \mathcal{P} est un espace vectoriel.

- **4** L'ensemble $C_0(\mathbb{R})$ des fonctions continues de \mathbb{R} dans \mathbb{R} , muni des opérations définies par (3), est un espace vectoriel.
- **6** L'ensemble \mathcal{P}_2 des fonctions polynomiales de degré inférieur ou égal à 2, muni encore des mêmes opérations, est un espace vectoriel.
- **6** L'ensemble $F_1 = \{ f \in \mathcal{F}(\mathbb{R}) : f(1) = 0 \}$, muni des opérations (3), est un espace vectoriel; l'ensemble $F_2 = \{ f \in \mathcal{F}(\mathbb{R}) : f(1) = 3 \}$, muni des opérations (3), n'en est pas un.

Exemple fondamental : L'espace vectoriel \mathbb{R}^n

L'ensemble \mathbb{R}^n est fait des n-uplets de nombres que l'on note verticalement

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Pour gagner de la place, on notera cet élément $(x_1, \ldots, x_n)^{\sim}$. L'opération \sim étant la transposition que l'on reverra au cours de calcul matriciel. L'addition et la multiplication scalaires sont définies de la manière la plus simple qui soit. On définit

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{et} \quad \lambda \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$$

pour tous $\lambda, x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$.

Cet ensemble muni de ces opérations est un espace vectoriel.

Si on n'indique pas les opérations, ce sera toujours celles-ci qui seront utilisées