

Sous-espaces vectoriels II, dépendance linéaire

Pierre Mathonet

Présentation provisoire

Département de Mathématique Faculté des Sciences

Liège, le 13 Février 2013

Intersections de sous-espaces vectoriels

Définition

Si V_1 et V_2 sont des sous-espaces vectoriels de E, l'intersection de V_1 et V_2 est l'ensemble

$$V_1 \cap V_2 = \{x \in E : x \in V_1 \text{ et } x \in V_2\}.$$

Proposition

Soient V_1 et V_2 des sous-espaces vectoriels de E. Alors $V_1 \cap V_2$ est un sous-espace vectoriel de E.

Intersections de sous-espaces vectoriels

Définition

Si V_1 et V_2 sont des sous-espaces vectoriels de E, l'intersection de V_1 et V_2 est l'ensemble

$$V_1 \cap V_2 = \{x \in E : x \in V_1 \quad \text{et} \quad x \in V_2\}.$$

Proposition

Soient V_1 et V_2 des sous-espaces vectoriels de E. Alors $V_1 \cap V_2$ est un sous-espace vectoriel de E.

Exercice:

1 Dans \mathbb{R}^2 , déterminer l'intersection des sous-espaces vectoriels

$$V_1 = \{\lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} : \lambda \in \mathbb{R}\}, \quad V_2 = \{\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : 3x + 2y = 0\}$$

 ${f 3}$ Faire de même avec les sous-espaces vectoriels de ${\Bbb R}^2$ suivants

$$V_1 = \{\lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} : \lambda \in \mathbb{R}\}, \quad V_2 = \{\mu \begin{pmatrix} 3 \\ 4 \end{pmatrix} : \mu \in \mathbb{R}\}.$$

4 Trouver l'intersection des sous-espaces vectoriels de \mathbb{R}^3 suivants

$$V_1 = \{\lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} : \lambda \in \mathbb{R}\}, \quad V_2 = \{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y - z = 0\}.$$

6 Faire de même avec

$$V_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y - z = 0 \right\} \text{ et}$$

$$V_2 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 4x + y - z = 0 \right\}.$$

Si V_1 et V_2 sont des sous-espaces vectoriels de E, $V_1 \cup V_2$ n'est pas un sous-espace vectoriel (en général) : considérer par exemple $V_1 = \{(x,0)^{\sim} \in \mathbb{R}^2 : x \in \mathbb{R}\}$ et $V_2 = \{(0,y)^{\sim} \in \mathbb{R}^2 : y \in \mathbb{R}\}$.

Si V_1 et V_2 sont des sous-espaces vectoriels de E, $V_1 \cup V_2$ n'est pas un sous-espace vectoriel (en général) : considérer par exemple $V_1 = \{(x,0)^{\sim} \in \mathbb{R}^2 : x \in \mathbb{R}\}$ et $V_2 = \{(0,y)^{\sim} \in \mathbb{R}^2 : y \in \mathbb{R}\}$.

Définition

Soit E un espace vectoriel et A une partie non vide de E. Le sous-espace vectoriel engendré par A, ou l'enveloppe linéaire de A est l'ensemble

$$A : \{ \lambda_1 a_1 + \cdots + \lambda_p a_p : p \in \mathbb{N}, \lambda_1, \dots, \lambda_p \in \mathbb{R}, a_1, \dots a_p \in A \}.$$

Si V_1 et V_2 sont des sous-espaces vectoriels de E, $V_1 \cup V_2$ n'est pas un sous-espace vectoriel (en général) : considérer par exemple $V_1 = \{(x,0)^{\sim} \in \mathbb{R}^2 : x \in \mathbb{R}\}$ et $V_2 = \{(0,y)^{\sim} \in \mathbb{R}^2 : y \in \mathbb{R}\}$.

Définition

Soit E un espace vectoriel et A une partie non vide de E. Le sous-espace vectoriel engendré par A, ou l'enveloppe linéaire de A est l'ensemble

$$A := \{\lambda_1 a_1 + \cdots + \lambda_p a_p : p \in \mathbb{N}, \lambda_1, \dots, \lambda_p \in \mathbb{R}, a_1, \dots a_p \in A\}.$$

Proposition

Pour toute partie A non vide de E, $A \in S$ un sous-espace vectoriel de E. Il contient A et est inclus dans tout sous-espace vectoriel V contenant A. C'est l'unique sous-espace vectoriel ayant cette propriété.

Si V_1 et V_2 sont des sous-espaces vectoriels de E, $V_1 \cup V_2$ n'est pas un sous-espace vectoriel (en général) : considérer par exemple $V_1 = \{(x,0)^{\sim} \in \mathbb{R}^2 : x \in \mathbb{R}\}$ et $V_2 = \{(0,y)^{\sim} \in \mathbb{R}^2 : y \in \mathbb{R}\}$.

Définition

Soit E un espace vectoriel et A une partie non vide de E. Le sous-espace vectoriel engendré par A, ou l'enveloppe linéaire de A est l'ensemble

$$A := \{\lambda_1 a_1 + \cdots + \lambda_p a_p : p \in \mathbb{N}, \lambda_1, \dots, \lambda_p \in \mathbb{R}, a_1, \dots a_p \in A\}.$$

Proposition

Pour toute partie A non vide de E, $A \in S$ un sous-espace vectoriel de E. Il contient A et est inclus dans tout sous-espace vectoriel V contenant A. C'est l'unique sous-espace vectoriel ayant cette propriété.

Donc, A est le plus petit sous-espace vectoriel contenant A.

Si V_1 et V_2 sont des sous-espaces vectoriels de E, $V_1 \cup V_2$ n'est pas un sous-espace vectoriel (en général) : considérer par exemple $V_1 = \{(x,0)^{\sim} \in \mathbb{R}^2 : x \in \mathbb{R}\}$ et $V_2 = \{(0,y)^{\sim} \in \mathbb{R}^2 : y \in \mathbb{R}\}$.

Définition

Soit E un espace vectoriel et A une partie non vide de E. Le sous-espace vectoriel engendré par A, ou l'enveloppe linéaire de A est l'ensemble

$$A := \{\lambda_1 a_1 + \cdots + \lambda_p a_p : p \in \mathbb{N}, \lambda_1, \dots, \lambda_p \in \mathbb{R}, a_1, \dots a_p \in A\}.$$

Proposition

Pour toute partie A non vide de E, $A \in S$ un sous-espace vectoriel de E. Il contient A et est inclus dans tout sous-espace vectoriel V contenant A. C'est l'unique sous-espace vectoriel ayant cette propriété.

Donc, A = A est le plus petit sous-espace vectoriel contenant A.

Exercice : Soient $u, v \in E$, déterminer $\{u\}$ (et $\{u\}$ $\{u\}$ $\{v\}$)

Définition

Soient V_1 et V_2 deux sous-espaces vectoriels d'un espace vectoriel E. La somme de V_1 et V_2 , notée V_1+V_2 est l'ensemble

$$V_1 + V_2 = \{u_1 + u_2 : u_1 \in V_1, u_2 \in V_2\}.$$

Définition

Soient V_1 et V_2 deux sous-espaces vectoriels d'un espace vectoriel E. La somme de V_1 et V_2 , notée V_1+V_2 est l'ensemble

$$V_1 + V_2 = \{u_1 + u_2 : u_1 \in V_1, u_2 \in V_2\}.$$

Proposition

Si V_1 et V_2 sont deux sous-espaces vectoriels d'un espace vectoriel E, alors $V_1 + V_2$ est un sous-espace vectoriel de E. On a de plus $V_1 + V_2 = V_1 \cup V_2 \langle .$

Définition

Soient V_1 et V_2 deux sous-espaces vectoriels d'un espace vectoriel E. La somme de V_1 et V_2 , notée $V_1 + V_2$ est l'ensemble

$$V_1 + V_2 = \{u_1 + u_2 : u_1 \in V_1, u_2 \in V_2\}.$$

Proposition

Si V_1 et V_2 sont deux sous-espaces vectoriels d'un espace vectoriel E, alors $V_1 + V_2$ est un sous-espace vectoriel de E. On a de plus $V_1 + V_2 = \rangle V_1 \cup V_2 \langle$.

Notation : si $A = \{u_1, \dots, u_p\}$, on note $A \subset Par \setminus u_1, \dots, u_p \subset Par \setminus u_1, \dots, u_p \subset Par \cap P$

Définition

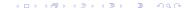
Soient V_1 et V_2 deux sous-espaces vectoriels d'un espace vectoriel E. La somme de V_1 et V_2 , notée V_1+V_2 est l'ensemble

$$V_1 + V_2 = \{u_1 + u_2 : u_1 \in V_1, u_2 \in V_2\}.$$

Proposition

Si V_1 et V_2 sont deux sous-espaces vectoriels d'un espace vectoriel E, alors $V_1 + V_2$ est un sous-espace vectoriel de E. On a de plus $V_1 + V_2 = \rangle V_1 \cup V_2 \langle$.

Notation : si $A = \{u_1, \dots, u_p\}$, on note $A \subset \{u_1, \dots, u_p\}$. Remarque : on a $u \subset \{u_1, \dots, u_p\}$.



Sommes directes

Définition

On dit que la somme des sous-espaces vectoriels V_1 et V_2 est directe si $V_1 \cap V_2 = \{0\}$. On note alors cette somme $V_1 \oplus V_2$.

Sommes directes

Définition

On dit que la somme des sous-espaces vectoriels V_1 et V_2 est directe si $V_1 \cap V_2 = \{0\}$. On note alors cette somme $V_1 \oplus V_2$.

Proposition

Soient V_1 et V_2 deux sous-espaces vectoriels de E. La somme de V_1 et V_2 est directe si, et seulement si, tout vecteur u de $V_1 + V_2$ se décompose de manière unique en $u = u_1 + u_2$ avec $u_1 \in V_1$ et $u_2 \in V_2$.

Définition

Un ensemble de vecteurs $G \subset E$ est une partie génératrice de E si tout vecteur de E est une combinaison linéaire des éléments de G.

Définition

Un ensemble de vecteurs $G \subset E$ est une partie génératrice de E si tout vecteur de E est une combinaison linéaire des éléments de G.

Exemple 1 : Dans \mathbb{R}^2 , $G = \{u, v\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, est une partie génératrice.

Définition

Un ensemble de vecteurs $G \subset E$ est une partie génératrice de E si tout vecteur de E est une combinaison linéaire des éléments de G.

Exemple 1 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, est une partie génératrice.

Exemple 2 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v, w\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$,

$$w = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 est une partie génératrice.

Définition

Un ensemble de vecteurs $G \subset E$ est une partie génératrice de E si tout vecteur de E est une combinaison linéaire des éléments de G.

Exemple 1 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, est une partie génératrice.

Exemple 2 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v, w\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$,

$$w = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 est une partie génératrice.

Exemple 3: Dans
$$\mathbb{R}^2$$
, $G = \{u, v, w\}$, où $u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

 $w = (0,0,1)^{\sim}$ est une partie génératrice.

Définition

Un ensemble de vecteurs $G \subset E$ est une partie génératrice de E si tout vecteur de E est une combinaison linéaire des éléments de G.

Exemple 1 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, est une partie génératrice.

Exemple 2 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v, w\}$, où $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$,

 $w = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ est une partie génératrice.

Exemple 3 : Dans
$$\mathbb{R}^2$$
, $G = \{u, v, w\}$, où $u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

 $w = (0,0,1)^{\sim}$ est une partie génératrice.

Exercice : trouver des parties génératrices de l'espace vectoriel \mathcal{P}_2 des fonctions polynomiales de degré inférieur ou égal à 2.

Soient les vecteurs de \mathbb{R}^2 définis par

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \text{et} \quad u_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

Soient les vecteurs de \mathbb{R}^2 définis par

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \text{et} \quad u_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

Il existe une dépendance linéaire entre ces vecteurs car

Soient les vecteurs de \mathbb{R}^2 définis par

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \text{et} \quad u_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

Il existe une dépendance linéaire entre ces vecteurs car

$$u_3 = u_1 + 2u_2$$
.

Ces vecteurs peuvent se compenser pour donner le vecteur nul puisqu'on a aussi

$$u_1 + 2u_2 - u_3 = 0.$$

Soient les vecteurs de \mathbb{R}^2 définis par

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \text{et} \quad u_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

Il existe une dépendance linéaire entre ces vecteurs car

$$u_3 = u_1 + 2u_2$$
.

Ces vecteurs peuvent se compenser pour donner le vecteur nul puisqu'on a aussi

$$u_1 + 2u_2 - u_3 = 0.$$

Dans \mathbb{R}^2 , il n'y a pas de dépendance linéaire entre

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Soient les vecteurs de \mathbb{R}^2 définis par

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \quad \text{et} \quad u_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

Il existe une dépendance linéaire entre ces vecteurs car

$$u_3 = u_1 + 2u_2$$
.

Ces vecteurs peuvent se compenser pour donner le vecteur nul puisqu'on a aussi

$$u_1 + 2u_2 - u_3 = 0.$$

Dans \mathbb{R}^2 , il n'y a pas de dépendance linéaire entre

$$v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Ces vecteurs ne peuvent pas "se compenser".

Définition

Soit I un ensemble d'indices (non vide). Si $|I| \neq 1$, une famille de vecteurs $D = (u_i : i \in I)$ est linéairement dépendante si l'un des vecteurs de cette famille est combinaison linéaire des autres. Si |I| = 1, alors la famille (u_1) est linéairement dépendante si $u_1 = 0$.

Définition

Soit I un ensemble d'indices (non vide). Si $|I| \neq 1$, une famille de vecteurs $D = (u_i : i \in I)$ est linéairement dépendante si l'un des vecteurs de cette famille est combinaison linéaire des autres. Si |I| = 1, alors la famille (u_1) est linéairement dépendante si $u_1 = 0$.

Dans ces cas, on dit aussi que les éléments de la famille sont *linéairement dépendants*.

Définition

Soit I un ensemble d'indices (non vide). Si $|I| \neq 1$, une famille de vecteurs $D = (u_i : i \in I)$ est linéairement dépendante si l'un des vecteurs de cette famille est combinaison linéaire des autres. Si |I| = 1, alors la famille (u_1) est linéairement dépendante si $u_1 = 0$.

Dans ces cas, on dit aussi que les éléments de la famille sont *linéairement dépendants*.

Définition

Une famille de vecteurs L de E qui n'est pas linéairement dépendante est dite *libre* ou linéairement indépendante.

Les éléments de L sont alors dits linéairement indépendants.

Définition

Soit I un ensemble d'indices (non vide). Si $|I| \neq 1$, une famille de vecteurs $D = (u_i : i \in I)$ est linéairement dépendante si l'un des vecteurs de cette famille est combinaison linéaire des autres. Si |I| = 1, alors la famille (u_1) est linéairement dépendante si $u_1 = 0$.

Dans ces cas, on dit aussi que les éléments de la famille sont *linéairement dépendants*.

Définition

Une famille de vecteurs L de E qui n'est pas linéairement dépendante est dite libre ou linéairement indépendante.

Les éléments de L sont alors dits linéairement indépendants.

Remarques:

1 ce ne sont pas les définitions classiques, mais elles me semblent plus concrètes que celles qui sont habituelles;

Définition

Soit I un ensemble d'indices (non vide). Si $|I| \neq 1$, une famille de vecteurs $D = (u_i : i \in I)$ est linéairement dépendante si l'un des vecteurs de cette famille est combinaison linéaire des autres. Si |I| = 1, alors la famille (u_1) est linéairement dépendante si $u_1 = 0$.

Dans ces cas, on dit aussi que les éléments de la famille sont *linéairement dépendants*.

Définition

Une famille de vecteurs L de E qui n'est pas linéairement dépendante est dite $\it libre$ ou linéairement indépendante.

Les éléments de L sont alors dits linéairement indépendants.

Remarques:

- 1 ce ne sont pas les définitions classiques, mais elles me semblent plus concrètes que celles qui sont habituelles;
- 2 Les familles permettent de tenir compte de répétitions, () > (

Un critère de dépendance

Traitons le cas d'une famille finie, qui nous occupera cette année, mais le résultat se généralise à des familles infinies. On formalise l'idée de "compensation" entre des vecteurs dépendants.

Un critère de dépendance

Traitons le cas d'une famille finie, qui nous occupera cette année, mais le résultat se généralise à des familles infinies. On formalise l'idée de "compensation" entre des vecteurs dépendants.

Proposition

Une famille $D = (u_1, ..., u_n)$ de vecteurs est linéairement dépendante si, et seulement si, il existe $\lambda_1, ..., \lambda_n \in \mathbb{R}$, non tous nuls, tels que

$$\lambda_1 u_1 + \cdots + \lambda_n u_n = 0.$$

Un critère de dépendance

Traitons le cas d'une famille finie, qui nous occupera cette année, mais le résultat se généralise à des familles infinies. On formalise l'idée de "compensation" entre des vecteurs dépendants.

Proposition

Une famille $D=(u_1,\ldots,u_n)$ de vecteurs est linéairement dépendante si, et seulement si, il existe $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$, non tous nuls, tels que

$$\lambda_1 u_1 + \cdots + \lambda_n u_n = 0.$$

If y a deux sens, et chaque fois deux cas n > 1 et n = 1.

Un critère d'indépendance

En contraposant le critère de dépendance précédent, on obtient un critère d'indépendance.

Proposition

Une famille (u_1, \ldots, u_n) de vecteurs est linéairement indépendante si, et seulement si, pour $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, l'égalité

$$\lambda_1 u_1 + \cdots + \lambda_n u_n = 0$$

a lieu seulement si on a $\lambda_1 = \cdots = \lambda_n = 0$.

Un critère d'indépendance

En contraposant le critère de dépendance précédent, on obtient un critère d'indépendance.

Proposition

Une famille (u_1, \ldots, u_n) de vecteurs est linéairement indépendante si, et seulement si, pour $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, l'égalité

$$\lambda_1 u_1 + \cdots + \lambda_n u_n = 0$$

a lieu seulement si on a $\lambda_1 = \cdots = \lambda_n = 0$.

En d'autres termes, une famille (u_1, \ldots, u_n) de vecteurs est linéairement indépendante si, et seulement si,

$$\left\{\begin{array}{c} \lambda_1, \dots, \lambda_n \in \mathbb{R} \\ \lambda_1 u_1 + \dots + \lambda_n u_n = 0 \end{array}\right\} \Rightarrow \lambda_1 = \dots = \lambda_n = 0.$$

Remarque : l'implication dans l'autre sens est troujours vraie.

Quelques propriétés

Proposition

Soit E un espace vectoriel. On a les propriétés suivantes.

- 1 Toute famille de vecteurs contenant 0 est linéairement dépendante.
- **2** Si $(u_1, ..., u_r)$ est linéairement dépendante, alors pour tout $y \in E$, $(u_1, ..., u_r, y)$ est linéairement dépendante.
- **3** Si (u_1, \ldots, u_r) $(r \ge 2)$ est lin. indépendante, alors (u_1, \ldots, u_{r-1}) aussi.
- **4** Si (u_1, \ldots, u_r) est linéairement indépendante, alors pour tout $y \in E$, (u_1, \ldots, u_r, y) est linéairement dépendante si, et seulement si, y est combinaison linéaire de u_1, \ldots, u_r .

Quelques propriétés

Proposition

Soit E un espace vectoriel. On a les propriétés suivantes.

- 1 Toute famille de vecteurs contenant 0 est linéairement dépendante.
- **2** Si $(u_1, ..., u_r)$ est linéairement dépendante, alors pour tout $y \in E$, $(u_1, ..., u_r, y)$ est linéairement dépendante.
- **3** Si (u_1, \ldots, u_r) $(r \ge 2)$ est lin. indépendante, alors (u_1, \ldots, u_{r-1}) aussi.
- 4 Si (u_1, \ldots, u_r) est linéairement indépendante, alors pour tout $y \in E$, (u_1, \ldots, u_r, y) est linéairement dépendante si, et seulement si, y est combinaison linéaire de u_1, \ldots, u_r .

Théorème (Steinitz¹)

Dans tout espace vectoriel E et pour tout $p \in \mathbb{N}_0$, p+1 combinaisons linéaires de p vecteurs sont toujours linéairement dépendantes.

1. Ernst Steinitz (1871-1928)

