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1. Previous research

1.1. Equivariant quantization. My research is linked to quantization, a concept which comes
from quantum physics and which consists in associating with a classical observable a quantum
observable. A quantization allows one to establish a correspondence between the classical formalism
and the quantum formalism of Mechanics. From a mathematical and geometrical point of view,
a classical observable can be identi�ed with a polynomial function on the cotangent bundle T ∗M
of a manifold M (a symbol) whereas a quantum observable can be assimilated with a di�erential
operator de�ned on M .

There is no quantization that commutes with the action of all the di�eomorphisms ofM , but when
a Lie group G acts onM , we de�ne a G-equivariant quantization as a linear bijection preserving the
principal symbol and exchanging the action of G between a space of symbols and the corresponding
space of di�erential operators. One takes G small enough to have the existence of the quantization
but large enough to have its uniqueness.

When M is the projective space and G is the projective group, this leads to the notion of
projectively equivariant quantization, whereas whenM is equal to Sp×Sq and G is equal to SO(p+
1, q+1), this leads to the notion of conformally equivariant quantization. From an in�nitesimal point
of view, the projectively and conformally equivariant quantizations correspond to quantizations
de�ned on the space Rm that commute with the Lie derivative in the direction of vector �elds
belonging to maximal Lie subalgebras of the Lie algebra of vector �elds on Rm. The existence
of projective and conformal quantizations over Rm has been proved for many spaces of di�erential
operators (see e.g. [22] or [14]). Other invariance types have been studied too; in all these situations,
the existence of quantizations on Rm has been proved ([4]).

The concept of equivariant quantization on Rm has a counterpart on an arbitrary manifold ([21]).
In the projective situation, it consists of the quest for a quantization depending on a connection
but only on its projective class, the quantization being natural in all of its arguments. Such a
quantization is called a natural and projectively invariant quantization. In the conformal situation,
the quantization depends on a pseudo-Riemannian metric, but only on its conformal class, the
quantization being natural in all of its arguments. Such a quantization is called a natural and
conformally invariant quantization. I solved completely the problem of the natural and projectively
invariant quantization and the problem of the natural and conformally invariant quantization ([26,
27, 40, 41, 29, 28, 42]) thanks to the theory of parabolic geometries exposed in [9] and in [10].

After these works, I began to investigate the quantization of singular spaces by proving in [39]
the existence of equivariant quantizations on orbifolds using a desingularization technique and the
existence of foliated quantizations established in [38].

1.2. Supergeometry. Another direction of my research is the quest for invariant quantizations on
supermanifolds. In [30] (resp. in [23]), we proved the existence of an sl(p+ 1|q) (resp. osp(p+ 1, q+

1|2r))-equivariant quantization on Rp|q (resp. Rp+q|2r), generalizing in this way the projectively
(resp. conformally) equivariant quantization over Rm. In [35], we show that there exists a unique

spo(2|2)-equivariant quantization on the supercircle S1|2, where spo(2|2) is a Lie algebra consisting
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of contact projective vector �elds. In [24], we prove the existence of a natural and projectively in-
variant quantization on supermanifolds for di�erential operators acting between densities, adapting
a method used by M. Bordemann ([5]).

In [25], we study the notion of geodesic in supergeometry: we give a de�nition of a geodesic
corresponding to a connection on a supermanifold and we prove notably that two connections are
projectively equivalent in the algebraic sense of [24] if and only if they have the same geodesics up
to parametrization, proving thus that the Weyl characterization holds too in the super setting.

1.3. Conformal symmetries of the conformal Laplacian. The natural and conformally invari-
ant quantization exposed previously allowed me to study in [32] with J.-P. Michel and J. Silhan the
symmetries and the conformal symmetries of the conformal Laplacian ∆Y on a pseudo-Riemannian
manifold (M, g). On an n-dimensional pseudo-Riemannian manifold (M, g), the conformal Lapla-
cian ∆Y is de�ned in this way:

∆Y = ∆− n− 2

4(n− 1)
Sc,

where ∆ denotes the Laplace-Beltrami operator and Sc denotes the scalar curvature associated with
g.

A symmetry of ∆Y is a di�erential operator that commutes with ∆Y . A conformal symmetry
of ∆Y is a generalization of this concept: it is a di�erential operator D1 such that there exists a
di�erential operator D2 giving rise to the relation ∆Y ◦D1 = D2 ◦∆Y . The existence of (conformal)
symmetries of di�erential operators is linked to the existence of R-separating coordinates systems for
some partial di�erential equations (see e.g. [19] or [6]). The concept of R-separation allows one to
reduce the resolution of these partial di�erential equations to the resolution of ordinary di�erential
equations.

The conformal symmetries of the conformal Laplacian were completely known on conformally
�at manifolds thanks to works by M. Eastwood and J.-P. Michel (see [15] and [33]). On an Einstein
pseudo-Riemannian manifold endowed with a Killing tensorK, B. Carter proved in [11] the existence
of a second-order symmetry of ∆Y that has K as principal symbol. But until now, the (conformal)
symmetries of ∆Y were unknown on an arbitrary pseudo-Riemannian manifold, even at the second
order.

In [32], we describe thanks to the natural and conformally invariant quantization all the second-
order (conformal) symmetries of ∆Y on an arbitrary pseudo-Riemannian manifold (M, g). The
principal symbol of such a (conformal) symmetry has to be a symmetric (conformal) Killing 2-
tensor that satis�es some additional condition. We then determine whether this condition is veri�ed
on pseudo-Riemannian manifolds endowed with (conformal) Killing tensors. As explained in the
scienti�c project, we expect that the conformal symmetries of ∆Y allow one to characterize the
existence of R-separating coordinate systems for the Schrödinger equation at zero energy ∆Y ψ = 0,
exactly in the same way as the conformal symmetries of the Laplace-Beltrami operator ∆ allow one
to characterize the existence of R-separating coordinate systems for the Laplace equation ∆Y ψ = 0
(see [19]).

2. Research project

2.1. Equivariant quantizations in supergeometry. In a �rst step, I would like to continue to
explore the equivariant quantization in supergeometry. This project is then in the prolongation of
the works [30] and [23] in the �at setting and of the work [24] in the curved setting. More precisely, I
would like to describe in a �rst step the di�erent maximal Lie subalgebras in the Lie superalgebra of
supervector �elds on the superspace Rp|q and to study the corresponding equivariant quantizations,
adapting in this way to the context of the supergeometry the work [4] in which F. Boniver and P.
Mathonet solved the problem of the IFFT-equivariant quantizations over Rm, where the IFFT Lie
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algebras are graded Lie algebras classi�ed by Kobayashi and Nagano in [20]. In a second step, I
would like to de�ne the notion of parabolic geometry in supergeometry and to build the Cartan
�ber bundles and connections associated with these geometries. These objects could in particular
allow one to extend the work [24] to the conformal setting.

2.2. Equivariant quantizations for parabolic geometries. In [35], I proved with N. Mellouli
and A. Nibirantiza the existence and the uniqueness of an spo(2|2)-equivariant quantization on

the supercircle S1|2 for di�erential operators acting between λ- and µ-densities when δ = µ − λ
is di�erent from some resonant values. After this work, it remained to generalize this result to a
contact supermanifold of arbitrary superdimension. This task is actually almost completed; I began
recently to write an article about this subject with J.-P. Michel and A. Nibirantiza ([34]). It could
be very interesting to generalize the contact projectively equivariant quantization studied in [13],
[18], [31] and [35] to an arbitrary contact manifold using the concept of contact projective structure
described e.g. by D. Fox in [17]. This concept is certainly the counterpart in the contact projective
setting of the concept of projective (resp. conformal) structure in the projective (resp. conformal)
setting.

The contact projective geometry is a particular case of parabolic geometry. The parabolic ge-
ometries are Cartan geometries of type (G,P ) for semisimple Lie groups G and parabolic subgroups
P ; they are described e.g. in [8]. The Lie algebra g of the Lie group G carries a |k|-grading;
if k = 1, g is among the IFFT Lie algebras classi�ed in [20]. In this situation, the problem of
equivariant quantization is completely solved (see [7] or [29]). My next project is to extend the
concept of equivariant quantization to parabolic geometries for which the semisimple Lie algebra
g carries a |k|-grading with k ≥ 2 (contact projective geometry and CR-geometry are examples of
such geometries). The �ltration on the space of di�erential operators that is well adapted to this
problem (i.e. the �ltration that implies the uniqueness of the equivariant quantization) is certainly
the �ltration described in [36] thanks to the �ltration of the tangent bundle associated with the
parabolic geometry.

2.3. R-separation of variables. As explained in the review on my previous research, I describe
in [32] with J.-P. Michel and J. Silhan the structure of second-order (conformal) symmetries of
the conformal Laplacian ∆Y on a pseudo-Riemannian manifold (M, g). A necessary and su�cient
condition to have the existence of a second-order (conformal) symmetry of ∆Y is the existence of a
(conformal) Killing tensor of degree 2 satisfying an additional property.

The next step in the study of the (conformal) symmetries of ∆Y is the study of the (conformal)
symmetries of ∆Y at an arbitrary order.

In [19], the authors give a necessary and su�cient condition for the R-separation of the Laplace
equation ∆ψ = 0, where ∆ denotes the Laplace-Beltrami operator, in terms of existence of second-
order conformal symmetries of ∆. We can thus expect to �nd a necessary and su�cient condition
for the R-separation in an orthogonal coordinates system of the Schrödinger equation at zero energy
∆Y ψ = 0 in terms of existence of second-order conformal symmetries of ∆Y .

From there, many projects can be imagined. We can �rst try to describe all the R-separating
coordinates systems for the equation ∆Y ψ = 0 on a pseudo-Riemannian manifold. A necessary
condition for the existence of such a separating coordinate system is the fact that the metric g is
conformal Stäckel (see e.g. [12]). A �rst step in the description of the R-separating coordinates
sytems is then the classi�cation of all pseudo-Riemannian manifolds endowed with conformal Stäckel
metrics. We could try in a second step to determine if the coordinates systems corresponding to
these metrics (i.e. the coordinates systems allowing one the separation of the Hamilton-Jacobi
equation) lead to the R-separation of ∆Y ψ = 0 by analyzing the condition linked to the existence
of conformal symmetries of ∆Y for these metrics. We could even try to determine a necessary and
su�cient condition for the R-separation of the equation ∆Y ψ = 0 only in terms of the metric g. Such
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a condition would be analogous to the Robertson's condition presented in [16] which characterizes
the existence of a R-separating coordinates system for the equation ∆ψ = Eψ only in terms of the
Ricci tensor associated with the metric g.

The separation of variables is a very fashionable �eld of study: in [43], the authors describe the
global geometry of the set of separating coordinates systems for the Hamilton-Jacobi equation on
the sphere Sn endowed with the canonical metric. It could be very interesting to extend this result
to an arbitrary pseudo-Riemannian manifold and to adapt it in order to study the geometrical
structure of the set of R-separating coordinates systems for the Schrödinger equation ∆Y ψ = Eψ.

2.4. Integral formulae for the equivariant quantizations. Another direction of research is the
quest of integral formulae for the equivariant quantizations. Such formulae were often used to express
quantizations in the framework of deformation quantization (see e.g. [1, 2, 3]). The advantages of an
integral formula are the following: �rst, such a formula has a compact form whereas we do not have
in general explicit and simple formulae for the equivariant quantizations. Secondly, the invariance
property of the equivariant quantizations would certainly appear much more clearly on an integral
formula. Eventually, such a formula allows one to extend the quantization to symbols of pseudo-
di�erential operators. A �rst step in the quest of integral formulae for the equivariant quantizations
was taken in the work [37] by M. Pevzner and A. Unterberger. This article is devoted to harmonic
analysis and pseudo-di�erential analysis on the homogeneous space Xn = SL(n + 1,R)/GL(n,R).
In this paper, the authors build an SL(n+1,R)-equivariant quantization of the spaceXn with values
in a space of pseudo-di�erential operators acting between densities de�ned on the n-dimensional
projective space. Despite of the fact that the space of symbols considered in [37] is not exactly the
same as the space of symbols considered in the framework of equivariant quantization, the method
used in [37] can be certainly adapted to build integral formulae for the sl(n + 1,R)-equivariant
quantization introduced by C. Duval, P. Lecomte and V. Ovsienko. In a second step, we could even
try to adapt the method for other types of invariance or for the curved setting.
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