Higher symmetries of Laplacian via quantization

Jean-Philippe Michel

Mathematics Research Unit, University of Luxembourg

Naive definition of higher symmetries of Laplacian

On pseudo-Euclidean space : $\mathbb{R}^{p,q}$, $\eta=\mathrm{Id}_p\oplus(-\mathrm{Id}_q)$ and p+q=n, the Laplacian is given by

$$\Delta = \eta^{ij} \partial_i \partial_j.$$

Usual symmetries : vector fields X s.t.

$$[\Delta, X] = 0$$

Naive definition of higher symmetries of Laplacian

On pseudo-Euclidean space : $\mathbb{R}^{p,q}$, $\eta=\mathrm{Id}_p\oplus(-\mathrm{Id}_q)$ and p+q=n, the Laplacian is given by

$$\Delta = \eta^{ij} \partial_i \partial_j.$$

Usual symmetries: vector fields X s.t.

$$[\Delta, X] = 0$$

Its higher symmetries are differential operators D_1 s.t.

$$\exists D', [\Delta, D_1] = D'\Delta$$
 or $\exists D_2, \Delta D_1 = D_2\Delta$.

Example: first order higher symmetries are given by

$$\Delta(X + \lambda \text{Div}X) = (X + \mu \text{Div}X)\Delta,$$

where $L_X \eta = F \eta$, i.e. $X \in \mathrm{o}(p+1,q+1) =: \mathfrak{g}$, and $\lambda = \frac{n-2}{2n}$, $\mu = \frac{n+2}{2n}$.

Remark: the space of HS is an algebra and a g-module.

- ClassificationMiller '76, Nikitin and Prilipko '90, Eastwood '02
- Algebra structure Eastwood '02 : quotient μ(g)/J'

- ClassificationMiller '76, Nikitin and Prilipko '90, Eastwood '02
- Algebra structure Eastwood '02 : quotient \$\mathfrak{U}(\mathfrak{g})/J'\$
- **3** Representation of \mathfrak{g} on ker Δ

```
Coadjoint orbits of G (= O(p+1, q+1)) \longrightarrow UIR of G
Minimal (nilpotent) coadjoint orbit \mathcal{O}_{min} \longrightarrow ?
```

- ClassificationMiller '76, Nikitin and Prilipko '90, Eastwood '02
- Algebra structure Eastwood '02 : quotient \$\mathfrak{U}(\mathfrak{g})/J'\$
- Representation of g on ker Δ

Coadjoint orbits of
$$G (= O(p+1, q+1)) \longrightarrow UIR$$
 of G
Minimal (nilpotent) coadjoint orbit $\mathcal{O}_{min} \longrightarrow ?$

Joseph '76 : \exists ! primitive ideal J s.t. $\operatorname{gr}(\mathfrak{U}(\mathfrak{g})/J) \simeq \operatorname{Poly}[\mathcal{O}_{\min}]$. Binegar and Zierau '91 : $\mathfrak{U}(\mathfrak{g})$ acts on $\ker \Delta$ with kernel J. If p+q even, it integrates in a UIR of G, the minimal representation.

$$J' = J!$$

Aims

- To propose a new method to classify the HS of Δ and to determine the algebra structure of the space of HS.
 - Eastwood ('02), and Leistner ('06): conformal ambient space,
 - Gover and Silhan ('09): tractor techniques,
 - here : quantization and symplectic reduction.
- To provide a geometrical link between $\ker \Delta$ and the Joseph ideal, via the minimal nilpotent coadjoint orbit.

Defnition of HS of Laplacian

Geometric setting:

(M,g) conformally flat manifold,

$$\lambda$$
-densities $\Gamma(|\Lambda^n T^*M|^{\otimes \lambda}) \simeq (\mathcal{C}^{\infty}(M), \ell^{\lambda})$ with $\ell_X^{\lambda} = X + \lambda \mathrm{Div} X$,

$$\Delta \ell_X^{\lambda} = \ell_X^{\mu} \Delta,$$

for $X \in \mathfrak{g}$, $\lambda = \frac{n-2}{2n}$, $\mu = \frac{n+2}{2n}$, and $\Delta \in \mathcal{D}^{\lambda,\mu}$ the conformal Laplacian.

Defnition of HS of Laplacian

Geometric setting:

(M,g) conformally flat manifold,

$$\lambda$$
-densities $\Gamma(|\Lambda^n T^*M|^{\otimes \lambda}) \simeq (\mathcal{C}^{\infty}(M), \ell^{\lambda})$ with $\ell_X^{\lambda} = X + \lambda \mathrm{Div} X$,

$$\Delta \ell_X^{\lambda} = \ell_X^{\mu} \Delta,$$

for $X \in \mathfrak{g}$, $\lambda = \frac{n-2}{2n}$, $\mu = \frac{n+2}{2n}$, and $\Delta \in \mathcal{D}^{\lambda,\mu}$ the conformal Laplacian.

Trivial symmetries : $\Delta(P\Delta) = (\Delta P)\Delta$, i.e. $(\Delta) = \{P\Delta, P \in \mathcal{D}^{\mu,\lambda}\}$.

Definition

The algebra of HS of Δ is $\mathcal{A}^{\lambda,1}\subset\mathcal{D}^{\lambda,\lambda}/(\Delta)$, and $[D_1]\in\mathcal{A}^{\lambda,1}$ satisfies

$$\exists D_2 \in \mathcal{D}^{\mu,\mu}, \text{ s.t. } \Delta D_1 = D_2 \Delta.$$

$$\mathcal{A}^{\lambda,1} = \ker \mathrm{QHS} : \mathcal{D}^{\lambda,\lambda}/(\Delta) \to \mathcal{D}^{\lambda,\mu}/(\Delta)$$
 conf. inv. $[\mathcal{D}_1] \mapsto [\Delta \mathcal{D}_1]$

Conformal Killing tensors

Principal symbol map ($\delta = \mu - \lambda$):

$$\sigma: \mathcal{D}_{k}^{\lambda,\mu} \longrightarrow \operatorname{Pol}_{k}^{\delta}(T^{*}M).$$

Example : $H := \sigma(\Delta) = g^{ij}p_ip_j$, its Hamiltonian flow project on the geodesic flow on (M, g).

The map σ satisfies $\sigma([A, B]) = {\sigma(A), \sigma(B)}$, hence (on $\mathbb{R}^{p,q}$)

$$[\Delta, D_1] = D'\Delta \Rightarrow \{H, \sigma(D_1)\} = \sigma(D')H.$$

It means $\sigma(D_1)$ is a conformal Killing tensor.

Definition

The space of symmetries of the null geodesic flow is $\mathcal{K}^1 = \{ \textit{Traceless CKT} \}, \text{ a subalgebra of } \operatorname{Pol}(T^*M)/(H).$

Conformal Killing tensors

Principal symbol map ($\delta = \mu - \lambda$):

$$\sigma: \mathcal{D}_{k}^{\lambda,\mu} \longrightarrow \operatorname{Pol}_{k}^{\delta}(T^{*}M).$$

Example : $H := \sigma(\Delta) = g^{ij}p_ip_j$, its Hamiltonian flow project on the geodesic flow on (M, g).

The map σ satisfies $\sigma([A, B]) = {\sigma(A), \sigma(B)}$, hence (on $\mathbb{R}^{p,q}$)

$$[\Delta, D_1] = D'\Delta \Rightarrow \{H, \sigma(D_1)\} = \sigma(D')H.$$

It means $\sigma(D_1)$ is a conformal Killing tensor.

Definition

The space of symmetries of the null geodesic flow is $\mathcal{K}^1 = \{ \textit{Traceless CKT} \}$, a subalgebra of $\text{Pol}(T^*M)/(H)$.

We have $\sigma: \mathcal{A}_k^{\lambda,1} \longrightarrow \mathcal{K}_k^1$, does it exist a section? More generally, does it exist a \mathfrak{g} -equivariant section to σ ?

Conformally equivariant quantization

Theorem (Duval, Lecomte, Ovsienko '99)

Let (M, g) conformally flat manifold. For every $k \in \mathbb{N}$ and (generic) shift $\delta = \mu - \lambda$,

$$\exists ! \mathcal{Q}^{\lambda,\mu} : \operatorname{Pol}_{k}^{\delta}(T^{*}M) \to \mathcal{D}_{k}^{\lambda,\mu}$$
 s.t

- (i) $Q^{\lambda,\mu}$ is a right inverse the principal symbol map, $\sigma \circ Q^{\lambda,\mu}_{|Pol_k} = \mathrm{Id}$,
- (ii) $\mathcal{Q}^{\lambda,\mu}$ intertwines the \mathfrak{g} -action.

Equivariant quantizations exist for various locally flat geometries (IFFT or |1|-graded) and differential operators acting on natural vector bundles. They admit curved analog in terms of Cartan geometries [Mathonet, Radoux '05-'08] and [Cap, Silhan '09].

Explicit formulae are known for $Q^{\lambda,\mu}$.

Classification of HS of Laplacian

Theorem (Eastwood '02)

For $\lambda=\frac{n-2}{2n}$, we have the isomorphism of $\mathfrak g$ -modules $\mathcal Q^{\lambda,\lambda}:\mathcal K^1\to\mathcal A^{\lambda,1}$. Moreover, every $P\in\mathcal K^1$ satisfies $\Delta\mathcal Q^{\lambda,\lambda}(P)=\mathcal Q^{\mu,\mu}(P)\Delta$.

Classification of HS of Laplacian

Theorem (Eastwood '02)

For $\lambda = \frac{n-2}{2n}$, we have the isomorphism of \mathfrak{g} -modules $\mathcal{Q}^{\lambda,\lambda}:\mathcal{K}^1 \to \mathcal{A}^{\lambda,1}$. Moreover, every $P \in \mathcal{K}^1$ satisfies $\Delta \mathcal{Q}^{\lambda,\lambda}(P) = \mathcal{Q}^{\mu,\mu}(P)\Delta$.

Idea of proof

$$\begin{array}{c|c} \mathcal{D}^{\lambda,\lambda}/(\Delta) & \xrightarrow{\text{QHS}} & \mathcal{D}^{\lambda,\mu}/(\Delta) \\ \mathcal{Q}^{\lambda,\lambda} & & & & & & & & & \\ \mathcal{Q}^{\lambda,\lambda} & & & & & & & & \\ \operatorname{Pol}^{0}_{*,0}(T^{*}M) & \xrightarrow{?} & \operatorname{Pol}^{\mu-\lambda}_{*,0}(T^{*}M) \end{array}$$

we identify? thanks to the classification of conformally invariant operators. Its kernel is \mathcal{K}^1 .

The algebra structure of HS (I)

Let K be the algebra generated by K^1 in $Pol(T^*M)$, and $A^{\lambda} := Q^{\lambda,\lambda}(K)$.

Theorem

We get the following commutative diagram

$$\begin{array}{c|c} S(\mathfrak{g}) & \xrightarrow{\Phi^{\lambda}} & \mathfrak{U}(\mathfrak{g}) \\ \downarrow^{\mu^{*}} & & \downarrow^{\ell^{\lambda}} \\ S(\mathfrak{g})/I \simeq \mathcal{K} & \xrightarrow{\mathcal{Q}^{\lambda,\lambda}} & \mathcal{A}^{\lambda} \simeq \mathfrak{U}(\mathfrak{g})/J^{\lambda} \end{array}$$

with $\Phi^{\lambda} = \operatorname{Sym} \circ \phi^{\lambda}$ and $\phi^{\lambda} = \operatorname{Id}_{S(\mathfrak{g})} + N$ where N lowers the degree.

Theorem

Let $\lambda = \frac{n-2}{2n}$. We get the following commutative diagram

$$S(\mathfrak{g}) \xrightarrow{\Phi^{\lambda}} \mathfrak{U}(\mathfrak{g})$$
 $\downarrow^{\ell^{\lambda}}$
 $S(\mathfrak{g})/I \simeq \mathcal{K} \xrightarrow{\mathcal{Q}^{\lambda,\lambda}} \mathcal{A}^{\lambda} \simeq \mathfrak{U}(\mathfrak{g})/J^{\lambda}$
 $\downarrow^{\chi^{1}} \simeq \mathcal{K}/(H) \xrightarrow{\mathcal{Q}^{\lambda,\lambda}} \mathcal{A}^{\lambda}/(\Delta) \simeq \mathcal{A}^{\lambda,1}$

with $\Phi^{\lambda} = \operatorname{Sym} \circ \phi^{\lambda}$ and $\phi^{\lambda} = \operatorname{Id}_{S(\mathfrak{g})} + N$ where N lowers the degree.

Coadjoint orbits of G via symplectic reduction

We restrict to $M = \mathbb{S}^p \times \mathbb{S}^q \subset \mathbb{R}^{p+1,q+1}$, and $p,q \geq 1$, $n = p + q \geq 3$. Recall that $\mathfrak{g}^* \simeq \Lambda^2 \mathbb{R}^{p+1,q+1}$. We have the following momentum map

$$T^*\mathbb{R}^{p+1,q+1} \xrightarrow{\operatorname{SL}(2,\mathbb{R})} \operatorname{Bv} \xrightarrow{\mathbb{R}^*} \operatorname{Gr}(2,n+2) \cup \{0\}$$

$$(u,v) \mapsto u \wedge v \mapsto \operatorname{span}(u,v)$$

Fact: $\mathcal{O}_{min} \stackrel{\mathbb{R}^*}{\rightarrow} P(0,0)$.

Coadjoint orbits of G via symplectic reduction

We restrict to $M = \mathbb{S}^p \times \mathbb{S}^q \subset \mathbb{R}^{p+1,q+1}$, and $p,q \geq 1$, $n = p + q \geq 3$. Recall that $\mathfrak{g}^* \simeq \Lambda^2 \mathbb{R}^{p+1,q+1}$. We have the following momentum map

$$T^*\mathbb{R}^{p+1,q+1} \xrightarrow{\operatorname{SL}(2,\mathbb{R})} \operatorname{Bv} \xrightarrow{\mathbb{R}^*} \operatorname{Gr}(2,n+2) \cup \{0\}$$

$$(u,v) \mapsto u \wedge v \mapsto \operatorname{span}(u,v)$$

Fact: $\mathcal{O}_{min} \xrightarrow{\mathbb{R}^*} P(0,0)$. $(G, SL(2,\mathbb{R}))$ is a Howe dual pair in $Sp(2n+2,\mathbb{R})$. In $T^*\mathbb{R}^{p+1,q+1}$, we get $sl(2,\mathbb{R}) = \langle x^2, xp, p^2 \rangle$.

Theorem

$$T^*(\mathbb{R}^{p+1,q+1}\setminus\{0\})//\left\langle x^2,xp\right\rangle \stackrel{\simeq}{\longrightarrow} T^*M$$

$$(T^*M\setminus M)//\left\langle H\right\rangle \stackrel{\mathbb{Z}_2}{\longrightarrow} \mathcal{O}_{min}$$

and we have $\mathcal{K} \simeq \text{Poly}[T_{\pm}^*M]$, $\mathcal{K}^1 \simeq \text{Poly}[\mathcal{O}_{min}]$.

Joseph ideal

Corollary

 $\mathcal{A}^{\lambda,1}\simeq\mathfrak{U}(\mathfrak{g})/J^{\lambda,1}$ with $J^{\lambda,1}$ is the Joseph ideal, hence the representation of \mathfrak{g} on ker Δ via ℓ^{λ} is minimal. $\mathcal{Q}^{\lambda,\lambda}:\mathcal{K}^{1}\to\mathcal{A}^{\lambda,1}$ is a quantization of \mathcal{O}_{min} .

The algebra structure of HS (II)

Recall that $\mathfrak{g}\simeq \Lambda^2\mathbb{R}^{p+1,q+1}=\exists.$ We have

$$\mathfrak{g}\odot\mathfrak{g}=\bigoplus\oplus\bigoplus\oplus\text{ and }\bigoplus=\bigoplus_0\oplus \Box _0\oplus C\mathbb{R}.$$

The morphism $S(\mathfrak{g}) \to \operatorname{Pol}(T^*\mathbb{R}^{p+1,q+1})$ has kernel (\square) . Moreover, the Casimir writes on $T^*\mathbb{R}^{p+1,q+1}: C=(xp)^2-x^2p^2$.

Theorem

We obtain
$$I = (\square) + (C)$$
 and $I^1 = I + (\square_0)$.

Via $\Phi^{\lambda} = \operatorname{Sym} \circ \overset{\smile}{\phi}^{\lambda}$, we get

$$J^{\lambda} = \left(\operatorname{Sym}\left(\square\right) + \operatorname{Sym}(C) - a(\lambda)\right) \text{ and } J^{\lambda,1} = J^{\lambda} + \left(\operatorname{Sym}\left(\square_{0}\right)\right),$$

where $a(\lambda)$ is the eigenvalue of the Casimir operator on λ -densities.

Thanks!