Quantization and conformal geometry of the supercotangent and spinor bundles

Jean-Philippe Michel

Institut Camille Jordan & Université Claude Bernard Lyon 1

Quantization = Correspondence between classical and quantum mechanics

	classical	quantum
Phase space	(\mathcal{M},ω)	\mathcal{H}
Observables	$A\subset\mathcal{C}^\infty(\mathcal{M})$	$\mathcal{A}\subset\mathcal{L}(\mathcal{H})$
Symmetry	$\mathfrak{g}\subset \mathrm{ham}(\mathcal{M},\omega)$	$\mathfrak{g}\subset \mathfrak{u}(\mathcal{H}).$

- **1** Classical space : graded algebra $A = \bigoplus_{k=0}^{\infty} A_k$ s.t. $A_k \cdot A_l \subset A_{k+l}$.
- ② Quantum space : filtered algebra $\mathcal{A} = \bigcup_{k=0}^{\infty} \mathcal{A}_k$ s.t. $\mathcal{A}_0 \subset \mathcal{A}_1 \subset \cdots$ and $\mathcal{A}_k \cdot \mathcal{A}_l \subset \mathcal{A}_{k+l}$.
- **3** Link: $\operatorname{Gr} A = \bigoplus_{k=0}^{\infty} A_k / A_{k-1}$.

Example

Let M be the configuration space of a physical system (without spin).

	classical	quantum
Phase space	T*M	$L^2(M)$
Observables	Symbols $S(M)$	Diff. Op. $\mathcal{D}(M)$

Quantization = $(symbol map)^{-1}$,

A Lie algebra $\mathfrak{g} \subset \operatorname{Vect}(M)$ acts canonically on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.

Example : on (M, g), locally, $\operatorname{conf}(M, g) = \{X \in \operatorname{Vect}(M) | L_X g_{ij} = \lambda g_{ij}\}$. This is of maximal dimension if (M, g) is conformally flat, i.e. $g_{ij} = F \eta_{ij}$ locally.

Problematics

Let M be the configuration manifold of a spin system. We suppose that (M,g) is a spin manifold, of dimension 2n and signature (p,q). We denote by S its spinor bundle.

classical	quantum
supercotangent (\mathcal{M}, ω)	spinors $\mathcal{H}=\mathrm{L}^2({\color{red}\mathtt{S}})$
symbols $S(M)[\xi]$	spinor diff. Op. D(M, S)
$\operatorname{conf}(M,g) \stackrel{?}{\hookrightarrow} \operatorname{ham}(\mathcal{M},\omega)$	$\operatorname{conf}(M,g) \stackrel{?}{\hookrightarrow} \operatorname{U}(\mathcal{H})$

- Actions of conformal vector fields of (M, g)
- Geometric quantization of the supercotangent
- Classification of the conformally covariant elements
- **③** Conformally equivariant quantization, defined on $S(M)[\xi]$.

From spin geometry to supergeometry

Over one point :

classical	quantum
??	spinor module S
$\operatorname{Gr} \mathbb{C}\operatorname{l}(V^*,g) \simeq \Lambda V^* \otimes \mathbb{C}$	$\mathbb{C}l(V^*,g)\simeq \mathrm{End}(S)$

Over (M,g):

- Clifford bundle Cl(M, g), spin bundle S and $Gr \Gamma(Cl(M, g)) = \Omega(M)$.
- Differential operators acting on $\Gamma(S)$: $\mathcal{D}(M,S) = \mathcal{D}(M) \otimes \Gamma(\mathbb{C}l(M,g)).$
- Symbols : $S(M)[\xi] = S(M) \otimes \Omega_{\mathbb{C}}(M)$.

Supercommutative algebra : $ab = (-1)^{|a||b|}ba$.

Definition: Let $E \to M$ be a vector bundle, it defines the supermanifold $\Pi E = (M, \Gamma(\cdot, \Lambda E^*))$, with space of functions $\mathcal{C}^{\infty}(\Pi E) = \Gamma(M, \Lambda E^*)$ and coordinates (x^i, ξ^a) . **Examples**: $\mathcal{C}^{\infty}(\Pi V) = \Lambda V^*$ and $\mathcal{C}^{\infty}(\Pi TM) = \Omega(M)$.

The supercotangent bundle

The supercotangent bundle is the supermanifold

$$\mathcal{M} = T^*M \times_M \Pi TM$$
,

whose space of functions is

$$\mathcal{C}^{\infty}(\mathcal{M}) = \mathcal{C}^{\infty}(T^*M) \otimes \Omega(M),$$

generates by the local coordinates (x^i, p_i, ξ^i) . It contains $S(M)[\xi]$.

There is a correspondence between (M, g, ∇) and (\mathcal{M}, ω) , where $\omega = d\alpha$ is symplectic and

$$\alpha = \rho_i dx^i + \frac{\hbar}{2i} g_{ij} \xi^i d^{\nabla} \xi^j.$$

Hamiltonian actions on (\mathcal{M}, ω)

Remark: the natural lift of $X: L(X) = X^i \partial_i - p_j \partial_i X^j \partial_{p_i} + \xi^i \partial_i X^j \partial_{\xi^j}$, does not preserve α .

Proposition

The condition $L_{\hat{X}}\alpha = 0$ does not fix a lift \hat{X} of $X \in \text{Vect}(M)$ to M.

We introduce $\beta = g_{ij}\xi^i dx^j$, the pull-back of the canonical 1-form of ΠTM .

Theorem

Only the vector fields $X \in \text{conf}(M, g)$ admit a lift \widetilde{X} preserving α and the direction of β . This lift is unique.

Denoting by ev_g : natural coord. \mapsto Darboux coord., we have

$$\tilde{X} = \operatorname{ev}_g L(X) (\operatorname{ev}_g)^{-1} + \operatorname{nilpotent}$$

Geometric quantization of the supercotangent (\mathcal{M}, ω)

Starting from (\mathcal{M}, ω) and a polarization, the geometric quantization construct

- \bullet a quantum representation space \mathcal{H} ,
- ② a Lie algebra morphism \mathcal{Q}_{QG} : Obs $\subset \mathcal{C}^{\infty}(\mathcal{M}) \to \mathcal{L}(\mathcal{H})$.

From $N \subset T_{\mathbb{C}}M$ an isotropic maximal subbundle of $T_{\mathbb{C}}M$ for g, we define a polarization of \mathcal{M} .

Proposition

Geometric quantization proves that ΛN^* is the spinor bundle of M, and

 \mathcal{Q}_{QG} : Obs $\subset \mathcal{S}(M)[\xi] \to \mathcal{D}(M,S)$ is a Lie algebra morphism s.t.

$$Q_{QG}(p_i) = \frac{\hbar}{i} \nabla_i$$
 and $Q_{QG}(\xi^i) = \frac{\gamma^i}{\sqrt{2}}$.

Spinor Lie derivatives

The comoment map of $\operatorname{conf}(M,g)$ on $\mathcal M$ is the Lie algebra morphism $\mathcal J:\operatorname{conf}(M,g)\to\mathcal C^\infty(\mathcal M)$ given by $\mathcal J_X=\left\langle \tilde X,\alpha\right\rangle$.

Proposition

Let $X \in conf(M, g)$, we have

$$Q_{QG}(\mathcal{J}_X) = \frac{\hbar}{\mathsf{i}} \mathsf{L}_X$$

where L is the Lie derivative of spinors, introduced by Kosmann.

The conf(M, g)-modules $S^{\delta}[\xi]$ et $\mathsf{D}^{\lambda,\mu}$

The structure of conf(M, g)-module of $F^{\lambda} = \Gamma(S) \otimes \Gamma(|\Lambda T^*M|^{\otimes \lambda})$, the space of λ -spinor densities, is given by

$$\mathsf{L}_X^\lambda = \mathsf{L}_X + \lambda \mathsf{Div}(X).$$

We introduce $D^{\lambda,\mu}$ the module of differential operators between F^{λ} and F^{μ} , endowed with the action of conf(M,g),

$$\mathcal{L}_{X}^{\lambda,\mu}A = \mathsf{L}_{X}^{\mu}A - A\mathsf{L}_{X}^{\lambda}.$$

The space of symbols is $\mathcal{S}^{\delta}[\xi] = \mathcal{S}(M)[\xi] \otimes \Gamma(|\Lambda T^*M|^{\otimes \delta})$, where $\delta = \mu - \lambda$. It admits the following action of $\mathrm{conf}(M,g)$,

$$L_X^{\delta} = \widetilde{X} + \delta \text{Div}(X).$$

Remark: using the normal ordering $\mathcal{N}:\left(x^{i}, p_{i}, \xi^{i}\right) \mapsto \left(x^{i}, \frac{\hbar}{i} \nabla_{i}, \frac{\gamma^{i}}{\sqrt{2}}\right)$,

we get

$$\mathcal{N}^{-1}\mathcal{L}_X^{\lambda,\mu}\mathcal{N}=\mathcal{L}_X^\delta+ ext{nilpotent}$$

The isometric invariants

We suppose (M, g) conformally flat, and we denote by e(p, q) the subalgebra of isometries.

If $X \in e(p, q)$, we have

$$\mathcal{N}^{-1}\mathcal{L}_X^{\lambda,\mu}\mathcal{N}=L_X^\delta=\operatorname{ev}_g L(X)(\operatorname{ev}_g)^{-1}.$$

Let ε be the canonical volum form of \mathbb{R}^n , and $(x^i, \tilde{p}_i, \tilde{\xi}^i)$ be Darboux coordinates on (\mathcal{M}, ω) .

Proposition

The subalgebra of isometric invariants of $\mathcal{S}^{\delta}[\xi]$ is generated by

$$R = \eta^{ij} \tilde{p}_i \tilde{p}_j, \quad \Delta = \tilde{\xi}^i \tilde{p}_i, \quad \chi = \varepsilon_{j_1 \dots j_n} \tilde{\xi}^{j_1} \dots \tilde{\xi}^{j_n} \quad \text{et} \quad \Delta * \chi = \varepsilon_{j_1 \dots j_n} \tilde{p}^{j_1} \tilde{\xi}^{j_2} \dots \tilde{\xi}^{j_n}.$$

Classification of conformal invariants

The scalar conformal invariants are $R^k \in \mathcal{S}^{\frac{2k}{n}}$ and $\mathcal{N}(R^k) \in \mathcal{D}^{\frac{n-2k}{2n},\frac{n+2k}{2n}}$.

Theorem

The conformal invariants are given by

- ② $\mathcal{N}(\chi) \in \mathsf{D}^{\lambda,\lambda}$, $\mathcal{N}(\Delta * \chi) \in \mathsf{D}^{\frac{n-1}{2n},\frac{n+1}{2n}}$, and $\mathcal{N}(\Delta R^s) \in \mathsf{D}^{\frac{n-2s-1}{2n},\frac{n+2s+1}{2n}}$, for all $\lambda \in \mathbb{R}$ and $s \in \mathbb{N}$.

Remark: the conformally invariants of $D^{\lambda,\mu}$ are then

- the chirality : $(\operatorname{vol}_q)_{i_1\cdots i_n}\gamma^{i_1}\cdots\gamma^{i_n}\in \mathsf{D}^{\lambda,\lambda}$,
- the Dirac operator : $\gamma^i \nabla_i \in D^{\frac{n-1}{2n}, \frac{n+1}{2n}}$,
- the twisted Dirac operator : $g^{ij_1}(\operatorname{vol}_g)_{j_1\dots j_n}\gamma^{j_2}\dots\gamma^{j_n}\nabla_i\in\mathcal{D}^{\frac{n-1}{2n},\frac{n+1}{2n}}$,
- the operators : $\mathcal{N}(\Delta R^s) \in D^{\frac{n-2s-1}{2n}, \frac{n+2s+1}{2n}}$, of order 2s+1.

Conformally equivariant quantization of the supercotangent bundle

Theorem

There exists (generically) a unique quantization $\mathcal{Q}^{\lambda,\mu}: \mathcal{S}^{\delta}[\xi] \to \mathsf{D}^{\lambda,\mu}$ which is conformally equivariant, i.e. such that $\mathcal{L}_X^{\lambda,\mu}\mathcal{Q}^{\lambda,\mu} = \mathcal{Q}^{\lambda,\mu}\mathcal{L}_X^{\delta}$ for all $X \in \mathrm{o}(p+1,q+1)$.

Remark: the conformal invariants correspond to each other via

$$\mathcal{S}^{\delta} \stackrel{\mathcal{Q}^{\lambda,\mu}}{\longrightarrow} \mathsf{D}^{\lambda,\mu},$$

as soon as $\mathcal{Q}^{\lambda,\mu}$ exists.

Thanks!

Reference : *Quantification conformément équivariante des fibrés supercotangents*, Jean-Philippe Michel, thèse, tel-00425576 version 1.