On conformally equivariant quantization

Jean-Philippe Michel

Unité de Recherche en Mathématiques, Université du Luxembourg

Euro-Magreb Conference on Geometry and Lie Theory 2010

- Introduction
 - Definition of equivariant quantization
 - The conformal case
- Existence and uniqueness of conformally equivariant quantization
 - Cohomological interpretation
 - Classification of conformally invariant operators
 - Main result
- Application : Higher symmetries of the conformal powers of the Laplacian

Quantization: "simplest case"

	classical	quantum
Phase space	$T^*\mathbb{R}^n$	$L^2(\mathbb{R}^n)$
Observables	$\operatorname{Pol}(T^*\mathbb{R}^n)$	$\mathcal{D}(\mathbb{R}^n)$
	graded algebra	filtered algebra.

The two algebras are linked by : $\operatorname{Pol}(T^*\mathbb{R}^n) \simeq \bigoplus_{k=0}^{\infty} \mathcal{D}_k(\mathbb{R}^n)/\mathcal{D}_{k-1}(\mathbb{R}^n)$.

quantization =
$$(symbol map)^{-1}$$

Examples

- The normal ordering : $\mathcal{N}: P^{i_1\cdots i_k}(x)p_{i_1}\cdots p_{i_k} \mapsto P^{i_1\cdots i_k}(x)\partial_{i_1}\cdots \partial_{i_k}$.
- \bullet Any map of the form : $\mathcal{N} \circ (\mathrm{Id} + \mathsf{Operator} \ \mathsf{lowering} \ \mathsf{the} \ \mathsf{degree}).$
- The Weyl quantization : $W = \mathcal{N} \circ \exp(\frac{D}{2})$, where $D = \partial_i \partial_{p_i}$.

Problem: how to fix a preferred one?

Idea: fix the quantization by symmetries of the configuration space.

Equivariant quantization [Duval, Lecomte, Ovsienko '99]

First Definition Let \mathfrak{g} be a Lie subalgebra of $\operatorname{Vect}(\mathbb{R}^n)$. The quantization \mathcal{Q} is \mathfrak{g} -equivariant if the following diagramm is commutative for every vector field $X \in \mathfrak{g}$,

$$\operatorname{Pol}(T^*\mathbb{R}^n) \xrightarrow{\mathcal{Q}} \mathcal{D}(\mathbb{R}^n) \tag{1}$$

$$\downarrow^{L_X} \qquad \qquad \downarrow^{\mathcal{L}_X} \qquad \qquad \downarrow^{\mathcal{L}_X} \qquad \qquad \downarrow^{\mathcal{L}_X} \qquad \qquad \downarrow^{\mathcal{Q}} \qquad \qquad \downarrow^{\mathcal$$

where L_X and \mathcal{L}_X denote the action of X on $\operatorname{Pol}(T^*\mathbb{R}^n)$ and $\mathcal{D}(\mathbb{R}^n)$.

Facts

- There exists no $Vect(\mathbb{R}^n)$ -equivariant quantization.
- The normal ordering is an $aff(\mathbb{R}^n)$ -equivariant quantization.

The $Vect(\mathbb{R}^n)$ -module structures at play:

- $\mathcal{F}^{\lambda} = (\mathcal{C}^{\infty}(\mathbb{R}^n), \ell_X^{\lambda})$ is the module of λ -weighted tensor densities, with $\ell_X^{\lambda} = X + \lambda \mathrm{Div}(X)$. Geometrically $\mathcal{F}^{\lambda} \simeq \Gamma(|\Lambda T^* \mathbb{R}^n|^{\otimes \lambda})$.
- $\mathcal{D}^{\lambda,\mu} = (\mathcal{D}(\mathbb{R}^n), \mathcal{L}_X^{\lambda,\mu})$ is the module of differential operators $A: \mathcal{F}^{\lambda} \to \mathcal{F}^{\mu}$, with the adjoint action $\mathcal{L}_X^{\lambda,\mu} A = \ell_X^{\mu} A A \ell_X^{\lambda}$.
- $S^{\delta} = (\operatorname{Pol}(T^*\mathbb{R}^n), L_X^{\delta})$ is the induced graded module of symbols, with the natural action $L_X^{\delta} = X p_j(\partial_i X^j)\partial_{p_i} + \delta \operatorname{Div}(X)$.

The $Vect(\mathbb{R}^n)$ -module structures at play:

- $\mathcal{F}^{\lambda} = (\mathcal{C}^{\infty}(\mathbb{R}^n), \ell_X^{\lambda})$ is the module of λ -weighted tensor densities, with $\ell_X^{\lambda} = X + \lambda \mathrm{Div}(X)$. Geometrically $\mathcal{F}^{\lambda} \simeq \Gamma(|\Lambda T^* \mathbb{R}^n|^{\otimes \lambda})$.
- $\mathcal{D}^{\lambda,\mu} = (\mathcal{D}(\mathbb{R}^n), \mathcal{L}_X^{\lambda,\mu})$ is the module of differential operators $A: \mathcal{F}^{\lambda} \to \mathcal{F}^{\mu}$, with the adjoint action $\mathcal{L}_X^{\lambda,\mu} A = \ell_X^{\mu} A A \ell_X^{\lambda}$.
- $S^{\delta} = (\operatorname{Pol}(T^*\mathbb{R}^n), L_X^{\delta})$ is the induced graded module of symbols, with the natural action $L_X^{\delta} = X p_j(\partial_i X^j)\partial_{p_i} + \delta \operatorname{Div}(X)$.

Definition

A \mathfrak{g} -equivariant quantization is a isomorphism of \mathfrak{g} -modules $\mathcal{Q}^{\lambda,\mu}:\mathcal{S}^\delta\to\mathcal{D}^{\lambda,\mu}$, whose inverse is a symbol map.

The conformal case

Setting : $(\mathbb{R}^n, [\eta])$ and $\mathfrak{cf} \simeq \mathrm{o}(p+1, q+1)$.

Theorem (DLO '99)

Let $\lambda, \mu \in \mathbb{R}$, and $\delta = \mu - \lambda$ be the shift. For every $k \in \mathbb{N}$, there exists a unique cf-equivariant quantization $\mathcal{Q}^{\lambda,\mu}: \mathcal{S}_k^\delta \to \mathcal{D}_k^{\lambda,\mu}$ iff $\delta \notin I_k$, a finite subset of positive rationnal numbers called resonances.

Restricting to S_2^{δ} , the resonances δ are

δ	<u>2</u> n	<u>n+2</u> 2n	1	<u>n+1</u> n	<u>n+2</u> n	
λ	<u>n-2</u> 2n	$0, \frac{n-2}{2n}$	0	$0,-\frac{1}{n}$	$-\frac{1}{n}$	(
μ	<u>n+2</u> 2n	$\frac{n+2}{2n}$, 1	1	$\frac{n+1}{n}$, 1	<u>n+1</u> n	

The corresponding modules $\mathcal{D}_2^{\lambda,\mu}$ are exceptionnal.

Problematic

Determination and interpretation of the sets I_k of resonances

- **1** DLO ('99) provide subsets of \mathbb{Q}_+^* which are not optimal, as shown by the explicit CEQ of \mathcal{S}_3^{δ} by Loubon-Djounga ('01).
- ② The projective case is fully understood in terms of cohomology of $sl(n+1,\mathbb{R})$ -modules [Lecomte, Ovsienko '00].
- **3** Silhan ('09) conjectures the minimality of the sets of resonances that he obtains, and remarks that they corresponds to the existence of some conformal invariant operators on S^{δ} .

Theorem (I)

Let $F^{\delta}=(F,L_X^{\delta})$ be a cf-submodule of \mathcal{S}_k^{δ} for any $\delta\in\mathbb{R}$. The cf-equivariant quantization exists and is unique on F^{δ} iff there exists no cf-invariant operator from F^{δ} to $\mathcal{S}_{k-l}^{\delta}$, for some $l=1,\ldots,k$.

Comments : we have to prove that, non-existence of CEQ \Rightarrow cf-invariant operator.

Ingredients of the proof : interpretation of the CEQ in terms of cohomology of \mathfrak{cf} -modules.

Cohomology of g-modules:

Let (M, L^M) be a \mathfrak{g} -module. The k-cochains are maps $\Lambda^k \mathfrak{g} \to M$, and

$$d\phi(X) = L_X^M \phi$$

$$d\gamma(X, Y) = L_X^M \cdot \gamma(Y) - L_Y^M \cdot \gamma(X) - \gamma([X, Y]).$$

Consequently, $H^0(\mathfrak{g}, M) = M^{\mathfrak{g}}$ and $\{1\text{-coboundaries}\} \simeq M/M^{\mathfrak{g}}$.

Cohomology of g-modules:

Let (M, L^M) be a \mathfrak{g} -module. The k-cochains are maps $\Lambda^k \mathfrak{g} \to M$, and

$$d\phi(X) = L_X^M \phi$$

$$d\gamma(X,Y) = L_X^M \cdot \gamma(Y) - L_Y^M \cdot \gamma(X) - \gamma([X,Y]).$$

Consequently, $H^0(\mathfrak{g}, M) = M^{\mathfrak{g}}$ and $\{1\text{-coboundaries}\} \simeq M/M^{\mathfrak{g}}$.

Splitting of exact sequences:

The exact sequence of \mathfrak{g} -modules, with linear section τ ,

$$0 \longrightarrow (A, L^{A}) \xrightarrow{\iota} (B, L^{B}) \xrightarrow{\sigma} (C, L^{C}) \longrightarrow 0, \tag{3}$$

defines a 1-cocycle $\gamma = \iota^{-1}(L^B - \tau \circ L^C)$, with values in Hom(C, A).

Lemma

The above sequence is split iff $\gamma = d\phi$ is a coboundary and $\tau + \phi$ is the sought section.

Cohomological interpretation of g-EQ

The \mathfrak{g} -EQ of \mathcal{S}_{k}^{δ} is a section of the exact sequence of \mathfrak{g} -modules

$$0 \longrightarrow \mathcal{D}_{k-1}^{\lambda,\mu} \longrightarrow \mathcal{D}_{k}^{\lambda,\mu} \longrightarrow \mathcal{S}_{k}^{\delta} \longrightarrow 0. \tag{4}$$

Cohomological interpretation of g-EQ

The $\mathfrak{g} ext{-EQ}$ of \mathcal{S}_{k}^{δ} is a section of the exact sequence of $\mathfrak{g} ext{-modules}$

$$0 \longrightarrow \mathcal{D}_{k-1}^{\lambda,\mu} \longrightarrow \mathcal{D}_{k}^{\lambda,\mu} \longrightarrow \mathcal{S}_{k}^{\delta} \longrightarrow 0.$$
 (4)

The $\mathfrak{g} ext{-EQ}$ of $F^\delta\subset\mathcal{S}^\delta_k$ is given by ϕ^δ_k , which exists iff

$$0 \longrightarrow \mathcal{S}_{k-l}^{\delta} \longrightarrow \mathcal{D}_{k}^{\lambda,\mu}/\mathcal{D}_{k-l-1}^{\lambda,\mu} \longrightarrow \mathcal{D}_{k}^{\lambda,\mu}/\mathcal{D}_{k-l}^{\lambda,\mu} \longrightarrow 0$$
 (5)

for succesively all $I=1,\ldots,k$. The cocycles $\gamma_l^\delta=(\mathcal{L}^{\lambda,\mu}-L^\delta)\circ\phi_{l-1}^\delta$ must be coboundaries $\gamma_l^\delta=\frac{\mathrm{d}\psi_l^\delta}{}$, and define then $\phi_l^\delta=\phi_{l-1}^\delta+\psi_l^\delta$.

The conformal case

We have $\mathfrak{cf} = \mathfrak{ce} + [\mathfrak{ce}, X_i]$ with \mathfrak{ce} the Lie algebra of affine conformal transformations and X_i an inversion.

Consequence : CEQ exists on F^{δ} iff it exists $\psi_l^{\delta} \in \operatorname{Hom}_{\mathfrak{ce}}(F^{\delta}, \mathcal{S}_{k-l}^{\delta})$ such that

$$\gamma_I^{\delta}(X_I) = [L_{X_I}^{\delta}, \psi_I^{\delta}].$$

Fact: there exists a finite dimensionnal space E independent of δ , which contains $\gamma_i^{\delta}(X_i)$ and the image of the linear map

$$[L_{X_i}^{\delta},\cdot]: \operatorname{Hom}_{\mathfrak{ce}}(F^{\delta},\mathcal{S}_{k-I}^{\delta}) \to E,$$

for every δ and λ . Thus, CEQ exists on F^{δ} iff $\gamma_{I}^{\delta}(X_{I}) \in \text{im}([L_{X_{i}}^{\delta},\cdot])$.

The conformal case

We have $\mathfrak{cf} = \mathfrak{ce} + [\mathfrak{ce}, X_i]$ with \mathfrak{ce} the Lie algebra of affine conformal transformations and X_i an inversion.

Consequence : CEQ exists on F^{δ} iff it exists $\psi_l^{\delta} \in \operatorname{Hom}_{\operatorname{ce}}(F^{\delta}, \mathcal{S}_{k-l}^{\delta})$ such that

$$\gamma_I^{\delta}(X_I) = [L_{X_I}^{\delta}, \psi_I^{\delta}].$$

Fact: there exists a finite dimensionnal space E independent of δ , which contains $\gamma_i^{\delta}(X_i)$ and the image of the linear map

$$[L_{X_i}^{\delta}, \cdot] : \operatorname{Hom}_{\mathfrak{ce}}(F^{\delta}, \mathcal{S}_{k-I}^{\delta}) \to E,$$

for every δ and λ . Thus, CEQ exists on F^{δ} iff $\gamma_{l}^{\delta}(X_{l}) \in \text{im}([L_{X_{l}}^{\delta},\cdot])$.

Proof of Theorem I : Let δ_0 be a resonance.

Generically $\gamma_l^{\delta}(X_i) \in \operatorname{im}([L_{X_i}^{\delta}, \cdot])$, so $\operatorname{rk}([L_{X_i}^{\delta_0}, \cdot]) < \operatorname{rk}([L_{X_i}^{\delta}, \cdot])$. The rank

Thm implies the existence of a \mathfrak{cf} -invariant operator from F^{δ_0} to $\mathcal{S}_{k-l}^{\delta_0}$.

Theorem II

Aim : classification of \mathfrak{cf} -invariant operators on \mathcal{S}^{δ}

\mathfrak{ce} -invariant operators on \mathcal{S}^{δ}

Fact: an operator $A: \mathcal{S}_k^\delta \to \mathcal{S}^\delta$ invariant by translations and dilations is a differential operator [Lecomte, Ovsienko '99].

Proposition (Weyl-Brauer)

The algebra of isometric invariant differential operators on \mathcal{S}^{δ} is generated by

$$\begin{array}{lcl} R & = & \eta^{ij} p_i p_j, & & \mathcal{E} = p_i \partial_{p_i}, & & T = \eta_{ij} \partial_{p_i} \partial_{p_j}, \\ \\ G & = & \eta^{ij} p_i \partial_i, & & D = \partial_i \partial_{p_i}, & & L = \eta^{ij} \partial_i \partial_j. \end{array}$$

They are all \mathfrak{ce} -invariant operators but from \mathcal{S}^{δ} to $\mathcal{S}^{\delta'}$ following

values of $n(\delta' - \delta)$	-2	0	2
ce-invariant operators	T	\mathcal{E}, \mathcal{D}	R, G, L

Restriction to cf-submodules

The cf-invariant operators \mathcal{E} and RT give rise to the decomposition

$$\mathcal{S}^{\delta} = igoplus_{k,s \in \mathbb{N}, 2s \leq k} \mathcal{S}^{\delta}_{k,s},$$

where $S_{k,s}^{\delta}$ is the space of homogeneous symbols of degree k of the form R^sQ with TQ=0. The following commutative diagramm

$$\begin{array}{ccc}
S_{k,s}^{\delta} & \longrightarrow & S_{l,t}^{\delta} \\
T^{s} \downarrow & & & & & & & \\
\downarrow & & & & & & & \\
S_{k-2s,0}^{\delta-\frac{2s}{n}} & \longrightarrow & S_{l-2t,0}^{\delta-\frac{2t}{n}}.
\end{array} \tag{7}$$

proves that it suffices to work with G_0 , D_0 , L_0 the restrictions and corestrictions to ker T of G, D, L. Unique relation $[D_0, G_0] = L_0$.

Proposition

$$\operatorname{Hom}_{\mathfrak{ce}}(\mathcal{S}_{k,0}^{\delta},\mathcal{S}_{k',0}^{\delta'}) = \left\{ \begin{array}{l} 0 \quad \text{if } j = \frac{n}{2}(\delta'-\delta) - \max(k'-k,0) \notin \mathbb{N}, \ \text{else} \\ \\ (G_0)^{k'-k} \left\langle L_0^j, G_0 L_0^{j-1} D_0, \ldots, G_0^j D_0^j \right\rangle \quad \text{for } l-k \leq 0 \\ \\ \left\langle L_0^j, G_0 L_0^{j-1} D_0, \ldots, G_0^j D_0^j \right\rangle (D_0)^{k-k'} \quad \text{for } k-l > 0. \end{array} \right.$$

Classification of conformally invariant operators on S^{δ}

Theorem (II)

 $\operatorname{Hom}_{\mathfrak{cf}}(\mathcal{S}_{k,s}^{\delta},\mathcal{S}_{k',s'}^{\delta})$ is either trivial or of dimension 1, generated by

- $R^{s'}G_0^gT^s$ if k-k'=s-s'=g and $\delta=\frac{2s+1-g}{n}$,
- D^d if k k' = d, s = s' and $\delta = 1 + \frac{2k d 1}{n}$,
- $R^{s'} \mathcal{L}_0^l T^s$ if k k' = 2s 2s' = 2l and $\delta = \frac{1}{2} + \frac{k-l}{n}$,

where the operator \mathcal{L}_0^I is of the form $L_0^I + a_1 G_0 L_0^{I-1} D_0 + \ldots + a_j G_0^j D_0^j$ for $a_i \in \mathbb{R}$.

This is a particular case of general classification [Baston, Eastwood, Rice '87/90].

Consequence : $\mathcal{S}_{k,s}^{\delta}$ is indecomposable as cf-module. Irreducible generically ?

Main result

Theorem (III)

The CEQ exists and is unique on $S_{k,s}^{\delta}$ iff $\delta \notin I_{k,s} = I_{k,s}^G \cup I_{k,s}^L \coprod I_{k,s}^D$, where

$$I_{k,s}^{G} = \left\{ \frac{2s+1-g}{n} \mid g=1,\dots,s \right\},$$

$$I_{k,s}^{L} = \left\{ \frac{1}{2} + \frac{k-I}{n} \mid I=1,\dots,s \right\},$$

$$I_{k,s}^{D} = \left\{ 1 + \frac{2k-d-1}{n} \mid d=1,\dots,k \right\},$$
(9)

are the sets of shifts δ for which operators of the form $R^{s'}G_0^gT^s$, $R^{s'}\mathcal{L}_0^lT^s$ and D^d are conformally invariant on some $\mathcal{S}_{k,s}^{\delta}$.

Theorem (IV)

Let $\delta \in I_{k,s}$. Restricted to the submodule $\mathcal{S}_{k,s}^{\delta}$, the CEQ $\mathcal{Q}^{\lambda,\mu}: \mathcal{S}_{k,s}^{\delta} \to \mathcal{D}^{\lambda,\mu}$ exists iff

$$\lambda = \begin{cases} \frac{n+2(g'-s-1)}{2n}, \ g' = 1, \dots, g & \text{if } \delta = \frac{2s+1-g}{n} \in I_{k,s}^G \setminus I_{k,s}^L, \\ -\frac{k-d'-\chi_{s\neq 0}}{n}, \ d' = 1, \dots, d & \text{if } \delta = 1 + \frac{2k-d-1}{n} \in I_{k,s}^D, \\ \frac{n-2s}{2n} \text{ or } -\frac{k-l-1}{n}, & \text{if } \delta = \frac{1}{2} + \frac{k-l}{n} \in I_{k,s}^L \setminus I_{k,s}^G, \\ \frac{n-2s}{2n}, & \text{if } \delta = \frac{1}{2} + \frac{k-l}{n} \in I_{k,s}^L \cap I_{k,s}^G. \end{cases}$$
(10)

Interpretation of the associated exceptionnal $\mathcal{D}^{\lambda,\mu}$?

Definition of higher symmetries of Δ^k

Let Δ^k be the k^{th} power of the Laplacian $\Delta = \eta^{ij} \partial_i \partial_j$ of (\mathbb{R}^n, η) . It is covariant under $X \in \text{Vect}(\mathbb{R}^n)$ if : $[X, \Delta^k] = f\Delta^k$ for $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$.

Definition

A higher symmetry of Δ^k is a differential operator D such that $[D, \Delta^k] = A\Delta^k$ for some $A \in \mathcal{D}(\mathbb{R}^n)$.

Equivalently it is a pair (D_1, D_2) such that $\Delta^k D_1 = D_2 \Delta^k$.

Example: the HS of 1st order for Δ^k are the pairs $(\ell_X^{\lambda}, \ell_X^{\mu})$, with $\lambda = \frac{n-2k}{2n}$, $\mu = \frac{n+2k}{2n}$ and $X \in \mathfrak{cf}$. So, $\Delta^k \in \mathcal{D}^{\lambda,\mu}$ is conformally invariant.

Aim: Determine the higher symmetries of Δ^k modulo the trivial ones $(A\Delta^k)$, i.e. the kernel of the \mathfrak{cf} -invariant operator

$$\begin{array}{ccc} \mathsf{HSQ} : \mathcal{D}^{\lambda,\lambda}/(\Delta^k) & \to & \mathcal{D}^{\lambda,\mu}/(\Delta^k) \\ D & \mapsto & \Delta^k D \end{array}$$

The determination of the higher symmetries of Δ^k :

- k = 1 by Eastwood in '02,
- k = 2 by Eastwood, Leistner in '06,
- general case by Gover, Silhan in '09.

Correspondence of classical and quantum HS

Idea: "quantum" HS correspond to classical ones via the CEQ.

	classical	quantum
Hamiltonian	$R = \eta^{ij} p_i p_j$	$\Delta = \eta^{ij} \partial_i \partial_j$
Symmetries	$P \text{ s.t. } \{R,P\} = QR$	D s.t. $[\Delta, D] = A\Delta$
	$P\in\ker G_0$	$D \in \ker \mathrm{HSQ}$

 $\ker G_0$ is the space of conformal Killing tensors.

Lemma

is commutative with HSC proportionnal to $R^{k-l-1}G_0^{2l+1}T^l$ on $S_{*,l}^0$.

Theorem

The HS of Δ^k are the $\mathcal{Q}^{\lambda,\lambda}(P)$ for P a generalized conformal Killing tensor, i.e. in the kernel of $R^{k-l-1}G_0^{2l+1}T^l$. Moreover, we have for such a P,

$$\Delta^k \mathcal{Q}^{\lambda,\lambda}(P) = \mathcal{Q}^{\mu,\mu}(P)\Delta^k.$$

Idea:

 $\mathcal{Q}^{\mu,\mu}\circ(\mathcal{Q}^{\lambda,\lambda})^{-1}:\mathcal{D}^{\lambda,\lambda}\to\mathcal{D}^{\mu,\mu}$ is the unique cf-invariant operator preserving the principal symbol.

Thanks!

Reference:

Conformally equivariant quantization and higher symmetries of conformal powers of the Laplacian, Jean-Philippe Michel, in preparation.