Higher symmetries of Yamabe Laplacian

Jean-Philippe Michel (ULg)

joint work with Fabian Radoux (ULg) and Josef Silhan (Masaryck University)

33rd Winter school in Geometry and Physics

Reduction of the problem	Known results	A new approach 0000	Examples 00
Problematic			

Let (M, g) be a pseudo-Riemannian manifold, $c \in \mathbb{R}$ and $\Delta_c = \nabla_i g^{ij} \nabla_j + cR$ a Laplacian operator on M.

Find the differential operators $D_1 \in \mathcal{D}_2(M)$ such that

- $[\Delta_c, D_1] = 0$, symmetries of Δ_c , preserve eigenspaces,
- $\Delta_c D_1 = D_2 \Delta_c$ for some $D_2 \in \mathcal{D}_2(M)$, conformal symmetries of Δ_c , preserve ker Δ_c .

Reduction of the problem	Known results	A new approach	Examples

Reduction of the problem

- First order symmetries
- Symmetries of (null) geodesic flow

Known results

A new approach

Conformally invariant quantization

4 Examples

- Symmetries
- Obstruction to symmetries

The zero order (conformal) symmetries are the constants. Up to constants, first order (conformal) symmetries are given by

- $[\Delta_c, X] = 0$ iff X is a Killing vector field, i.e. $L_X g = 0$ or $\nabla_{(i} X_{j)} = 0$,
- **②** $\Delta_c(X + \frac{n-2}{2n}\nabla_i X^i) = (X + \frac{n+2}{2n}\nabla_i X^i)\Delta_c$ only if X is conformal Killing vector field, i.e. $L_X g = 2fg$ or $\nabla_{(i}X_{j)} = fg_{ij}$ for some $f \in C^{\infty}(M)$.

The zero order (conformal) symmetries are the constants. Up to constants, first order (conformal) symmetries are given by

- $[\Delta_c, X] = 0$ iff X is a Killing vector field, i.e. $L_X g = 0$ or $\nabla_{(i} X_{j)} = 0$,
- A_c(X + $\frac{n-2}{2n}\nabla_i X^i$) = (X + $\frac{n+2}{2n}\nabla_i X^i$)Δ_c only if X is conformal Killing vector field, i.e. $L_X g = 2fg$ or $\nabla_{(i}X_{j)} = fg_{ij}$ for some $f \in C^{\infty}(M)$.

If $c = rac{n-2}{4(n-1)}$ then $\Delta_c := \Delta_Y$ is the Yamabe Lapalcian. We get

 $\Delta_Y L_X^{\lambda} = \Delta_Y L_X^{\mu}$, for all X CK vector fields,

where $L_{\lambda}^{\chi} = \nabla_{X} + \lambda \nabla_{i} X^{i}$ is the Lie derivative along X on $\Gamma(|\Lambda^{\text{top}} T^{*} M|^{\otimes \lambda})$ and $\lambda = \frac{n-2}{2n}$, $\mu = \frac{n+2}{2n}$.

Reduction of the problem	Known results	A new approach	Examples
000		0000	00

Let $\mathcal{D}^{\lambda,\mu}(M) := \mathcal{D}(M; |\Lambda^{\mathrm{top}} T^*M|^{\otimes \lambda}, |\Lambda^{\mathrm{top}} T^*M|^{\otimes \mu})$. It is isomorphic to $\mathcal{D}(M)$ via

$$\begin{array}{c|c} \Gamma(|\Lambda^{\operatorname{top}} T^* M|^{\otimes \lambda}) & \longrightarrow & \Gamma(|\Lambda^{\operatorname{top}} T^* M|^{\otimes \mu}) \\ |\operatorname{vol}_{g}|^{\lambda} & & & & & & \\ \mathcal{C}^{\infty}(M) & & & & & & \\ \end{array}$$

Since $g \mapsto \exp(2f)g$ translates into $\operatorname{vol}_g \mapsto \exp(nf)\operatorname{vol}_g$, the usual transformation rule

$$\Delta_{\mathbf{Y}} \mapsto \exp(-\frac{n+2}{2}f) \circ \Delta_{\mathbf{Y}} \circ \exp(\frac{n-2}{2}f)$$

means that Δ_Y is conformally invariant in $\mathcal{D}^{\lambda,\mu}(M)$ if $\lambda = \frac{n-2}{2n}$ and $\mu = \frac{n+2}{2n}$.

Reduction of the problem	Known results	A new approach	Examples
000		0000	00

Let $\mathcal{D}^{\lambda,\mu}(M) := \mathcal{D}(M; |\Lambda^{\operatorname{top}} T^*M|^{\otimes \lambda}, |\Lambda^{\operatorname{top}} T^*M|^{\otimes \mu})$. It is isomorphic to $\mathcal{D}(M)$ via

Since $g \mapsto \exp(2f)g$ translates into $\operatorname{vol}_g \mapsto \exp(nf)\operatorname{vol}_g$, the usual transformation rule

$$\Delta_{\mathbf{Y}} \mapsto \exp(-\frac{n+2}{2}f) \circ \Delta_{\mathbf{Y}} \circ \exp(\frac{n-2}{2}f)$$

means that Δ_Y is conformally invariant in $\mathcal{D}^{\lambda,\mu}(M)$ if $\lambda = \frac{n-2}{2n}$ and $\mu = \frac{n+2}{2n}$.

We restrict our study to
$$\Delta_Y \in \mathcal{D}^{\lambda,\mu}(M)$$
.

Let $\sigma_k : \mathcal{D}_k(M) \to \operatorname{Pol}_k(T^*M) \cong \Gamma(\mathcal{S}^k TM)$ be the principal symbol map at order k. We have $\sigma_2(\Delta_Y) := H$ where $H = g^{ij} p_i p_j$ and (x^i, p_i) are coordinates on T^*M .

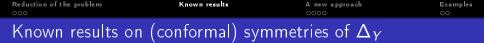
- $[\Delta_Y, D_1] = 0 \Rightarrow \{H, \sigma_k(D_1)\} = 0$, i.e. $\sigma_k(D_1) = K$ is a Killing tensor, Killing equation $\nabla_{(i_0} K_{i_1 \cdots i_k)} = 0$.
- A_YD₁ − D₂Δ_Y = 0 ⇒ {H, σ_k(D₁)} ∈ (H), i.e. σ_k(D₁) = K is a conformal Killing tensor, i.e. $∇_{(i_0}K_{i_1\cdots i_k)_0} = 0$.

Let $\sigma_k : \mathcal{D}_k(M) \to \operatorname{Pol}_k(T^*M) \cong \Gamma(\mathcal{S}^k TM)$ be the principal symbol map at order k. We have $\sigma_2(\Delta_Y) := H$ where $H = g^{ij} p_i p_j$ and (x^i, p_i) are coordinates on T^*M .

- $[\Delta_Y, D_1] = 0 \Rightarrow \{H, \sigma_k(D_1)\} = 0$, i.e. $\sigma_k(D_1) = K$ is a Killing tensor, Killing equation $\nabla_{(i_0} K_{i_1 \cdots i_k)} = 0$.
- A_YD₁ − D₂Δ_Y = 0 ⇒ {H, σ_k(D₁)} ∈ (H), i.e. σ_k(D₁) = K is a conformal Killing tensor, i.e. $∇_{(i_0}K_{i_1\cdots i_k)_0} = 0$.

Questions: does there exists

- Q : {(conformal) Killing tensors} \longrightarrow {(conformal) symmetries of Δ_Y }?
- extra conditions on K for it to give rise to (conformal) symmetries of Δ_Y ?



 Carter proves in '77: for g a Ricci-flat metric we have [Δ_Y, ∇_iK^{ij}∇_j] = 0 iff K is a Killing 2-tensor. Moreover, he get in general

$$[\Delta, \nabla_i \mathcal{K}^{ij} \nabla_j] = -\frac{2}{3} (\nabla_i \mathcal{K}^{k[i} \mathcal{R}_k^{j]}) \nabla_j.$$

Seastwood proves in '05: for g a conformally flat metric and K a conformal Killing tensor there exists (D_K, D'_K) such that $\Delta_Y D_K = D'_K \Delta_Y$. For K a 2-tensor we get

$$D_{\mathcal{K}} = \mathcal{K}^{ij} \nabla_i \nabla_j + \frac{n}{n+2} (\nabla_i \mathcal{K}^{ij}) \nabla_j + \frac{n(n-2)}{4(n+2)(n+1)} (\nabla_i \nabla_j \mathcal{K}^{ij}) - \frac{n+2}{4(n+1)} R_{ij} \mathcal{K}^{ij},$$

$$D'_{\mathcal{K}} = \mathcal{K}^{ij} \nabla_i \nabla_j + \frac{n+4}{n+2} (\nabla_i \mathcal{K}^{ij}) \nabla_j + \frac{n+4}{4(n+1)} (\nabla_i \nabla_j \mathcal{K}^{ij}) - \frac{n+2}{4(n+1)} R_{ij} \mathcal{K}^{ij}.$$

Reduction of the problem	Known results	A new approach ●000	Examples 00
Conformally invariant	quantization		
Our startegy relies on a quan	tization map, i.e. a lin	lear map	

 $\mathcal{Q}: \operatorname{Pol}(\widetilde{T^*M}) \to \mathcal{D}(M)$ such that $\sigma_k \circ \mathcal{Q} = \operatorname{Id}$ on degree k symbols.

Theorem (Mathonet, Radoux; Silhan '09)

For generic weights λ, μ , there exists a family of quantizations indexed by metrics

$$\mathcal{Q}^{\lambda,\mu}_g:\operatorname{Pol}^{\mu-\lambda}(T^*M)\to\mathcal{D}^{\lambda,\mu}(M),$$

which are natural, i.e.

$$\mathcal{Q}_{\Psi^*g}^{\lambda,\mu}(\Psi^*P) = \Psi^*\mathcal{Q}_g^{\lambda,\mu}(P),$$

for all symbol P, metric g and $\Psi \in \text{Diff}(M)$, and conformally invariant i.e.

$$\mathcal{Q}_{\exp(2f)g}^{\lambda,\mu} = \mathcal{Q}_g^{\lambda,\mu}.$$

$$\begin{split} \mathcal{Q}_{\mathsf{g}}^{\lambda,\mu}(\mathsf{K}) &= \mathsf{K}^{ij} \nabla_i \nabla_j \mathsf{K} + \beta_1 (\nabla_i \mathsf{K}^i j) \nabla_j + \beta_2 \mathsf{g}^{ij} (\nabla_i \mathrm{Tr} \mathsf{K}) \nabla_j \\ &+ \beta_3 (\nabla_i \nabla_j \mathsf{K}^{ij}) + \beta_4 (\Delta \mathrm{Tr} \mathsf{K}) + \beta_5 \mathrm{Ric}_{ij} \mathsf{K}^{ij} + \beta_6 \mathsf{R} \mathrm{Tr} \mathsf{K}. \end{split}$$

Reduction of the problem	Known results	A new approach 0●00	Examples 00
Main result (I)			

Theorem

For $\lambda = \frac{n-2}{2n}$, $\mu = \frac{n+2}{2n}$, and K a conformal Killing tensor, we get $\Delta_Y \mathcal{Q}_g^{\lambda,\lambda}(K) - \mathcal{Q}_g^{\mu,\mu}(K)\Delta_Y = \mathcal{Q}_g^{\lambda,\mu}(\text{Obs}(K))$

where Obs is given by the natural and conformally invariant operator

$$\begin{array}{rcl} \mathrm{Obs}:\mathrm{Pol}_2^0(T^*M) &\to & \mathrm{Pol}_1^{\mu-\lambda}(T^*M) \\ & & & & & & & & \\ & & & & & & C^{ijkl}\nabla_j K_{kl} - \frac{4}{3}A^{ijk}K_{jk} \end{array}$$

with C the Weyl tensor and A the Cotton-York tensor.

Remind that C is the traceless part of the Riemann tensor and $A^{ijk} = -\frac{1}{n-3} \nabla_I C^{ijkl}$.

Reduction of the problem	Known results	A new approach	Examples
000		00●0	00
Main result (II)			

Theorem

The operator $D_1 \in \mathcal{D}_2^{\lambda,\lambda}(M)$ is a conformal symmetry of Δ_Y iff: $K = \sigma_2(D_1)$ is a conformal Killing tensor, $Obs(K)^{\flat} = d(f_K)$ for some $f_K \in \mathcal{C}^{\infty}(M)$ and

$$D_1 = \mathcal{Q}_g^{\lambda,\lambda}(K) + f_K + L_X^{\lambda} + c.$$

for some conformal Killing vector X and constant c.

Since $\mathcal{Q}^{\lambda,\lambda}_{g}(K) = \mathcal{Q}^{\mu,\mu}_{g}(K)$ for K Killing we deduce

Corollary

The operator $D \in \mathcal{D}_2^{\lambda,\lambda}(M)$ is a symmetry of Δ_Y iff: $K = \sigma_2(D_1)$ is a Killing tensor, $Obs(K)^{\flat} = d(f_K)$ for some $f_K \in \mathcal{C}^{\infty}(M)$ and

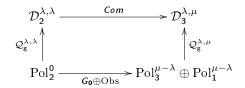
$$D=\mathcal{Q}_g^{\lambda,\lambda}(K)+f_K+X+c.$$

for some Killing vector X and constant c.

Reduction of the problem	Known results	A new approach	Examples
000		0000	00
ldea of proof			

The pairing between $\lambda\text{-}$ and $\mu\text{-}\text{densities}$ for $\lambda+\mu=1$ implies:

Let $D_1 \in \mathcal{D}^{\lambda,\lambda}(M)$ and $Com(D_1) = \Delta_Y \mathcal{Q}_g^{\lambda,\lambda}(K) - \mathcal{Q}_g^{\mu,\mu}(K)\Delta_Y$ where $K = (\mathcal{Q}^{\lambda,\lambda})^{-1}(D_1)$. Since $Com(D_1)$ is real and skew-adjoint we get



Naturality and conformal invariance determine uniquely the operators G_0 and Obs.

Reduction of the problem	Known results	A new approach	Examples
000		0000	•0
Examples of symm	netries		

- Obviously Obs(K) vanishes on conformally flat space and we recover Eastwood result.
- In the Ricci-flat case, $Obs(K) = \frac{n-2}{8(n+1)}d(\Delta TrK)$ if K is a Killing, and we recover the Carter's result
- In dimension 3 the pairs of diagonal metrics and Killing tensors are classified [Di Pirro 1896],

$$H = \frac{1}{2(\gamma(x_1, x_2) + c(x_3))} \left(a(x_1, x_2)p_1^2 + b(x_1, x_2)p_2^2 + p_3^2 \right),$$

$$K = \frac{1}{\gamma(x_1, x_2) + c(x_3)} \left(c(x_3)a(x_1, x_2)p_1^2 + c(x_3)b(x_1, x_2)p_2^2 - \gamma(x_1, x_2)p_3^2 \right).$$

Then, we get $Obs(K) = -\frac{3}{4}d(\operatorname{Ric}_{0}^{ij}K_{ii})$ with Ric_{0} the traceless part of the Ricci tensor of g.

Reduction of the problem	Known results	A new approach	Examples
000		0000	00
An example of oh	structions to co	nformal symmetri	<u>م</u> ح

The Euclidean Taub-NUT metric:

$$\mathbf{g} = \left(1 + \frac{2m}{r}\right) \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2\right) + \frac{4m^2}{1 + \frac{2m}{r}} \left(d\psi + \cos \theta d\phi\right)^2,$$

is hyperkähler

$$J_i = 4m \left(d\psi + \cos \theta d\phi
ight) \wedge dx_i - \left(1 + rac{2m}{r}
ight) arepsilon_{ijk} dx^j \wedge dx^k,$$

and admits a Killing-Yano tensor:

$$Y = 2m^2 \left(d\psi + \cos\theta d\phi \right) \wedge dr + r(r+m)(r+2m) \sin\theta d\theta \wedge d\phi.$$

The skew-symmetric tensor *Y is a conformal Killing-Yano tensor and J_i are Killing-Yano tensors hence

$$K_i = p_\mu p_
u \left(* Y^{(\mu}_\lambda J^{
u)\lambda}_i \right)$$

are conformal Killing tensors. We get $Obs(K_i)$ is not exact.