Higher symmetries of Yamabe Laplacian

Jean-Philippe Michel (ULg)

joint work with Fabian Radoux (ULg) and Josef Silhan (Masaryck University)
$33^{\text {rd }}$ Winter school in Geometry and Physics

Problematic

Let $(M, \mathrm{~g})$ be a pseudo-Riemannian manifold, $c \in \mathbb{R}$ and $\Delta_{c}=\nabla_{i} \mathrm{~g}^{i j} \nabla_{j}+c R$ a Laplacian operator on M.

Find the differential operators $D_{1} \in \mathcal{D}_{2}(M)$ such that

- $\left[\Delta_{c}, D_{1}\right]=0$, symmetries of Δ_{c}, preserve eigenspaces,
- $\Delta_{c} D_{1}=D_{2} \Delta_{c}$ for some $D_{2} \in \mathcal{D}_{2}(M)$, conformal symmetries of Δ_{c}, preserve ker Δ_{c}.
(1) Reduction of the problem
- First order symmetries
- Symmetries of (null) geodesic flow
(2) Known results
(3) A new approach
- Conformally invariant quantization

4 Examples

- Symmetries
- Obstruction to symmetries

First order (conformal) symmetries of Δ_{C}

The zero order (conformal) symmetries are the constants. Up to constants, first order (conformal) symmetries are given by
(1) $\left[\Delta_{c}, X\right]=0$ iff X is a Killing vector field, i.e. $L_{X} \mathrm{~g}=0$ or $\nabla_{(i} X_{j)}=0$,
(2) $\Delta_{c}\left(X+\frac{n-2}{2 n} \nabla_{i} X^{i}\right)=\left(X+\frac{n+2}{2 n} \nabla_{i} X^{i}\right) \Delta_{c}$ only if X is conformal Killing vector field, i.e. $L_{X} g=2 f g$ or $\nabla_{(i} X_{j)}=f g_{i j}$ for some $f \in \mathcal{C}^{\infty}(M)$.

First order (conformal) symmetries of Δ_{C}

The zero order (conformal) symmetries are the constants. Up to constants, first order (conformal) symmetries are given by
(1) $\left[\Delta_{c}, X\right]=0$ iff X is a Killing vector field, i.e. $L_{X} \mathrm{~g}=0$ or $\nabla_{(i} X_{j)}=0$,
(2) $\Delta_{c}\left(X+\frac{n-2}{2 n} \nabla_{i} X^{i}\right)=\left(X+\frac{n+2}{2 n} \nabla_{i} X^{i}\right) \Delta_{c}$ only if X is conformal Killing vector field, i.e. $L_{X} g=2 f g$ or $\nabla_{(i} X_{j)}=f g_{i j}$ for some $f \in \mathcal{C}^{\infty}(M)$.

If $c=\frac{n-2}{4(n-1)}$ then $\Delta_{c}:=\Delta_{Y}$ is the Yamabe Lapalcian. We get

$$
\Delta_{Y} L_{X}^{\lambda}=\Delta_{Y} L_{X}^{\mu}, \quad \text { for all } X C K \text { vector fields }
$$

where $L_{X}^{\lambda}=\nabla_{X}+\lambda \nabla_{i} X^{i}$ is the Lie derivative along X on $\Gamma\left(\left|\Lambda^{\text {top }} \boldsymbol{T}^{*} M\right|^{\otimes \lambda}\right)$ and $\lambda=\frac{n-2}{2 n}, \mu=\frac{n+2}{2 n}$.

Let $\mathcal{D}^{\lambda, \mu}(M):=\mathcal{D}\left(M ;\left|\Lambda^{\operatorname{top}} T^{*} M\right|^{\otimes \lambda},\left|\Lambda^{\operatorname{top}} \boldsymbol{T}^{*} M\right|^{\otimes \mu}\right)$. It is isomorphic to $\mathcal{D}(M)$ via
$\Gamma\left(\left|\Lambda^{\text {top }} T^{*} M\right|^{\otimes \lambda}\right) \longrightarrow \Gamma\left(\left|\Lambda^{\text {top }} T^{*} M\right|^{\otimes \mu}\right)$

Since $\mathrm{g} \mapsto \exp (2 f) \mathrm{g}$ translates into $\operatorname{vol}_{\mathrm{g}} \mapsto \exp (n f) \operatorname{vol}_{\mathrm{g}}$, the usual transformation rule

$$
\Delta_{Y} \mapsto \exp \left(-\frac{n+2}{2} f\right) \circ \Delta_{Y} \circ \exp \left(\frac{n-2}{2} f\right)
$$

means that Δ_{Y} is conformally invariant in $\mathcal{D}^{\lambda, \mu}(M)$ if $\lambda=\frac{n-2}{2 n}$ and $\mu=\frac{n+2}{2 n}$.

Let $\mathcal{D}^{\lambda, \mu}(M):=\mathcal{D}\left(M ;\left|\Lambda^{\operatorname{top}} T^{*} M\right|^{\otimes \lambda},\left|\Lambda^{\operatorname{top}} \boldsymbol{T}^{*} M\right|^{\otimes \mu}\right)$. It is isomorphic to $\mathcal{D}(M)$ via

$$
\begin{gathered}
\Gamma\left(\left|\Lambda^{\text {top }} T^{*} M\right|^{\otimes \lambda}\right) \longrightarrow \Gamma\left(\left|\Lambda^{\operatorname{top}} T^{*} M\right|^{\otimes \mu}\right) \\
\mid{ }_{\left|\operatorname{vog}_{g}\right|^{\prime}} \uparrow \\
\mathcal{C}^{\infty}(M) \longrightarrow \mid \mathcal{C}^{\infty}(M)
\end{gathered}
$$

Since $\mathrm{g} \mapsto \exp (2 f) \mathrm{g}$ translates into $\operatorname{vol}_{\mathrm{g}} \mapsto \exp (n f) \operatorname{vol}_{\mathrm{g}}$, the usual transformation rule

$$
\Delta_{Y} \mapsto \exp \left(-\frac{n+2}{2} f\right) \circ \Delta_{Y} \circ \exp \left(\frac{n-2}{2} f\right)
$$

means that Δ_{Y} is conformally invariant in $\mathcal{D}^{\lambda, \mu}(M)$ if $\lambda=\frac{n-2}{2 n}$ and $\mu=\frac{n+2}{2 n}$.

We restrict our study to $\Delta_{Y} \in \mathcal{D}^{\lambda, \mu}(M)$.

Symmetries of (null) geodesic flow on ($M, \mathrm{~g}$)

Let $\sigma_{k}: \mathcal{D}_{k}(M) \rightarrow \operatorname{Pol}_{k}\left(T^{*} M\right) \cong \Gamma\left(\mathcal{S}^{k} T M\right)$ be the principal symbol map at order k. We have $\sigma_{2}\left(\Delta_{Y}\right):=H$ where $H=g^{i j} p_{i} p_{j}$ and $\left(x^{i}, p_{i}\right)$ are coordinates on $T^{*} M$.
(0) $\left[\Delta_{Y}, D_{1}\right]=0 \Rightarrow\left\{H, \sigma_{k}\left(D_{1}\right)\right\}=0$, i.e. $\sigma_{k}\left(D_{1}\right)=K$ is a Killing tensor, Killing equation $\nabla_{\left(i_{0}\right.} K_{\left.i_{1} \cdots i_{k}\right)}=0$.
(2) $\Delta_{Y} D_{1}-D_{2} \Delta_{Y}=0 \Rightarrow\left\{H, \sigma_{k}\left(D_{1}\right)\right\} \in(H)$, i.e. $\sigma_{k}\left(D_{1}\right)=K$ is a conformal Killing tensor, i.e. $\nabla_{\left(i_{0}\right.} K_{\left.i_{1} \cdots i_{k}\right)}=0$.

Symmetries of (null) geodesic flow on (M, g)

Let $\sigma_{k}: \mathcal{D}_{k}(M) \rightarrow \operatorname{Pol}_{k}\left(T^{*} M\right) \cong \Gamma\left(\mathcal{S}^{k} T M\right)$ be the principal symbol map at order k. We have $\sigma_{2}\left(\Delta_{Y}\right):=H$ where $H=g^{i j} p_{i} p_{j}$ and $\left(x^{i}, p_{i}\right)$ are coordinates on $T^{*} M$.
(1) $\left[\Delta_{Y}, D_{1}\right]=0 \Rightarrow\left\{H, \sigma_{k}\left(D_{1}\right)\right\}=0$, i.e. $\sigma_{k}\left(D_{1}\right)=K$ is a Killing tensor, Killing equation $\nabla_{\left(i_{0}\right.} K_{\left.i_{1} \cdots i_{k}\right)}=0$.
(2) $\Delta_{Y} D_{1}-D_{2} \Delta_{Y}=0 \Rightarrow\left\{H, \sigma_{k}\left(D_{1}\right)\right\} \in(H)$, i.e. $\sigma_{k}\left(D_{1}\right)=K$ is a conformal Killing tensor, i.e. $\nabla_{\left(i_{0}\right.} K_{\left.i_{1} \cdots i_{k}\right)_{0}}=0$.

Questions: does there exists

- $\mathcal{Q}:\{($ conformal $)$ Killing tensors $\} \longrightarrow\left\{\right.$ (conformal) symmetries of $\left.\Delta_{Y}\right\}$?
- extra conditions on K for it to give rise to (conformal) symmetries of Δ_{Y} ?

Known results on (conformal) symmetries of Δ_{Y}

(1) Carter proves in '77: for g a Ricci-flat metric we have $\left[\Delta_{Y}, \nabla_{i} K^{i j} \nabla_{j}\right]=0$ iff K is a Killing 2-tensor. Moreover, he get in general

$$
\left[\Delta, \nabla_{i} K^{i j} \nabla_{j}\right]=-\frac{2}{3}\left(\nabla_{i} K^{k[i} R_{k}^{j j}\right) \nabla_{j}
$$

(2) Eastwood proves in ' 05 : for g a conformally flat metric and K a conformal Killing tensor there exists $\left(D_{K}, D_{K}^{\prime}\right)$ such that $\Delta_{Y} D_{K}=D_{K}^{\prime} \Delta_{Y}$. For K a 2-tensor we get

$$
\begin{aligned}
& D_{K}=K^{i j} \nabla_{i} \nabla_{j}+\frac{n}{n+2}\left(\nabla_{i} K^{i j}\right) \nabla_{j}+\frac{n(n-2)}{4(n+2)(n+1)}\left(\nabla_{i} \nabla_{j} K^{i j}\right)-\frac{n+2}{4(n+1)} R_{i j} K^{i j}, \\
& D_{K}^{\prime}=K^{i j} \nabla_{i} \nabla_{j}+\frac{n+4}{n+2}\left(\nabla_{i} K^{i j}\right) \nabla_{j}+\frac{n+4}{4(n+1)}\left(\nabla_{i} \nabla_{j} K^{i j}\right)-\frac{n+2}{4(n+1)} R_{i j} K^{i j} .
\end{aligned}
$$

Conformally invariant quantization

Our startegy relies on a quantization map, i.e. a linear map $\mathcal{Q}: \operatorname{Pol}\left(T^{*} M\right) \rightarrow \mathcal{D}(M)$ such that $\sigma_{k} \circ \mathcal{Q}=\mathrm{Id}$ on degree k symbols.

Theorem (Mathonet, Radoux; Silhan '09)

For generic weights λ, μ, there exists a family of quantizations indexed by metrics

$$
\mathcal{Q}_{g}^{\lambda, \mu}: \operatorname{Pol}^{\mu-\lambda}\left(T^{*} M\right) \rightarrow \mathcal{D}^{\lambda, \mu}(M)
$$

which are natural, i.e.

$$
\mathcal{Q}_{\psi^{*} g}^{\lambda, \mu}\left(\Psi^{*} P\right)=\Psi^{*} \mathcal{Q}_{g}^{\lambda, \mu}(P),
$$

for all symbol P, metric g and $\Psi \in \operatorname{Diff}(M)$, and conformally invariant i.e.

$$
\mathcal{Q}_{\exp (2 f) g}^{\lambda, \mu}=\mathcal{Q}_{g}^{\lambda, \mu} .
$$

$$
\begin{aligned}
\mathcal{Q}_{\mathrm{g}}^{\lambda, \mu}(K) & =K^{i j} \nabla_{i} \nabla_{j} K+\beta_{1}\left(\nabla_{i} K^{i} j\right) \nabla_{j}+\beta_{2} \mathrm{~g}^{i j}\left(\nabla_{i} \operatorname{Tr} K\right) \nabla_{j} \\
& +\beta_{3}\left(\nabla_{i} \nabla_{j} K^{i j}\right)+\beta_{4}(\Delta \operatorname{Tr} K)+\beta_{5} \operatorname{Ric}_{i j} K^{i j}+\beta_{6} R \operatorname{Tr} K .
\end{aligned}
$$

Main result (I)

Theorem

For $\lambda=\frac{n-2}{2 n}, \mu=\frac{n+2}{2 n}$, and K a conformal Killing tensor, we get

$$
\Delta_{Y} \mathcal{Q}_{g}^{\lambda, \lambda}(K)-\mathcal{Q}_{g}^{\mu, \mu}(K) \Delta_{Y}=\mathcal{Q}_{g}^{\lambda, \mu}(\operatorname{Obs}(K))
$$

where Obs is given by the natural and conformally invariant operator

$$
\begin{aligned}
\text { Obs : } \operatorname{Pol}_{2}^{0}\left(T^{*} M\right) & \rightarrow \operatorname{Pol}_{1}^{\mu-\lambda}\left(T^{*} M\right) \\
K & \mapsto C^{i j k l} \nabla_{j} K_{k l}-\frac{4}{3} A^{i j k} K_{j k}
\end{aligned}
$$

with C the Weyl tensor and A the Cotton-York tensor.
Remind that C is the traceless part of the Riemann tensor and $A^{i j k}=-\frac{1}{n-3} \nabla_{l} C^{i j k l}$.

Main result (II)

Theorem

The operator $D_{1} \in \mathcal{D}_{2}^{\lambda, \lambda}(M)$ is a conformal symmetry of Δ_{Y} iff: $K=\sigma_{2}\left(D_{1}\right)$ is a conformal Killing tensor, $\operatorname{Obs}(K)^{b}=d\left(f_{K}\right)$ for some $f_{K} \in \mathcal{C}^{\infty}(M)$ and

$$
D_{1}=\mathcal{Q}_{g}^{\lambda, \lambda}(K)+f_{K}+L_{X}^{\lambda}+c .
$$

for some conformal Killing vector X and constant c.
Since $\mathcal{Q}_{\mathrm{g}}^{\lambda, \lambda}(K)=\mathcal{Q}_{\mathrm{g}}^{\mu, \mu}(K)$ for K Killing we deduce

Corollary

The operator $D \in \mathcal{D}_{2}^{\lambda, \lambda}(M)$ is a symmetry of Δ_{Y} iff: $K=\sigma_{2}\left(D_{1}\right)$ is a Killing tensor, $\operatorname{Obs}(K)^{b}=d\left(f_{K}\right)$ for some $f_{K} \in \mathcal{C}^{\infty}(M)$ and

$$
D=\mathcal{Q}_{g}^{\lambda, \lambda}(K)+f_{K}+X+c .
$$

for some Killing vector X and constant c.

Idea of proof

The pairing between λ - and μ-densities for $\lambda+\mu=1$ implies:

- there is an adjoint operation on $\mathcal{D}^{\lambda, \mu}(M)$ if $\lambda+\mu=1$, $\mathcal{Q}_{\mathrm{g}}^{\lambda, \mu}(K)^{*}=(-1)^{k} \mathcal{Q}^{\lambda, \mu}(\bar{K})$
- $\mathcal{Q}_{\mathrm{g}}^{\lambda, \lambda}(K)^{*}=(-1)^{k} \mathcal{Q}_{\mathrm{g}}^{\mu, \mu}(\bar{K})$.

Let $D_{1} \in \mathcal{D}^{\lambda, \lambda}(M)$ and $\operatorname{Com}\left(D_{1}\right)=\Delta_{Y} \mathcal{Q}_{\mathrm{g}}^{\lambda, \lambda}(K)-\mathcal{Q}_{\mathrm{g}}^{\mu, \mu}(K) \Delta_{Y}$ where $K=\left(\mathcal{Q}^{\lambda, \lambda}\right)^{-1}\left(D_{1}\right)$. Since $\operatorname{Com}\left(D_{1}\right)$ is real and skew-adjoint we get

Naturality and conformal invariance determine uniquely the operators G_{0} and Obs .

Examples of symmetries

- Obviously $\operatorname{Obs}(K)$ vanishes on conformally flat space and we recover Eastwood result.
- In the Ricci-flat case, $\operatorname{Obs}(K)=\frac{n-2}{8(n+1)} d(\Delta \operatorname{Tr} K)$ if K is a Killing, and we recover the Carter's result.
- In dimension 3 the pairs of diagonal metrics and Killing tensors are classified [Di Pirro 1896],

$$
\begin{aligned}
H & =\frac{1}{2\left(\gamma\left(x_{1}, x_{2}\right)+c\left(x_{3}\right)\right)}\left(a\left(x_{1}, x_{2}\right) p_{1}^{2}+b\left(x_{1}, x_{2}\right) p_{2}^{2}+p_{3}^{2}\right), \\
K & =\frac{1}{\gamma\left(x_{1}, x_{2}\right)+c\left(x_{3}\right)}\left(c\left(x_{3}\right) a\left(x_{1}, x_{2}\right) p_{1}^{2}+c\left(x_{3}\right) b\left(x_{1}, x_{2}\right) p_{2}^{2}-\gamma\left(x_{1}, x_{2}\right) p_{3}^{2}\right) .
\end{aligned}
$$

Then, we get $\operatorname{Obs}(K)=-\frac{3}{4} d\left(\operatorname{Ric}_{0}^{i j} K_{i j}\right)$ with Ric_{0} the traceless part of the Ricci tensor of g .

An example of obstructions to conformal symmetries

The Euclidean Taub-NUT metric:

$$
\mathrm{g}=\left(1+\frac{2 m}{r}\right)\left(d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}\right)+\frac{4 m^{2}}{1+\frac{2 m}{r}}(d \psi+\cos \theta d \phi)^{2}
$$

is hyperkähler

$$
J_{i}=4 m(d \psi+\cos \theta d \phi) \wedge d x_{i}-\left(1+\frac{2 m}{r}\right) \varepsilon_{i j k} d x^{j} \wedge d x^{k}
$$

and admits a Killing-Yano tensor:

$$
Y=2 m^{2}(d \psi+\cos \theta d \phi) \wedge d r+r(r+m)(r+2 m) \sin \theta d \theta \wedge d \phi .
$$

The skew-symmetric tensor $* Y$ is a conformal Killing-Yano tensor and J_{i} are Killing-Yano tensors hence

$$
K_{i}=p_{\mu} p_{\nu}\left(* Y_{\lambda}^{(\mu} J_{i}^{\nu) \lambda}\right)
$$

are conformal Killing tensors. We get $\operatorname{Obs}\left(K_{i}\right)$ is not exact.

