Higher symmetries of the system $\Delta \oplus otin D$

Jean-Philippe Michel (Université de Liège)

joint work with Josef Šilhan (Masaryk University)

34rd Winter school in Geometry and Physics

Overview on higher symmetries

Let E and F be two vector bundles over the smooth manifold M.

Definition

Let $D \in \mathcal{D}(M; E, F)$ be a differential operator. A higher symmetry of D is a diff. op. $A \in \mathcal{D}(M, E)$ such that

$$D \circ A = B \circ D$$

for some diff. op. $B \in \mathcal{D}(M, F)$.

- Higher symmetries (HS) preserve the kernel of D.
- The space of HS is a subalgebra of $\mathcal{D}(M, E)$, i.e., an associative and non-commutative filtered algebra.

Introduction
00000

- On \mathbb{R}^n , the algebras of HS are classified for: the Laplacian Δ [Eastwood, Ann. Math. 2005], its powers Δ^k [Gover-Šilhan, JMP 2012], the CR-subLaplacian [Vlasáková, 2012], the Dirac operator \not{D} [Eastwood-Somberg-Souček], the Schrödinger operator [Bekaert-Meunier-Moroz, JHEP 2012], the superLaplacian [Coulembier-Somberg-Souček, IMRN 2013].
- They all read as $\mathfrak{U}(\mathfrak{g})/\mathcal{J}$, with $\mathfrak{g} \hookrightarrow \operatorname{Vect}(\mathbb{R}^n)$ acting by Lie derivative on $\Gamma(E)$.

Introduction
00000

- On \mathbb{R}^n , the algebras of HS are classified for: the Laplacian Δ [Eastwood, Ann. Math. 2005], its powers Δ^k [Gover-Šilhan, JMP 2012], the CR-subLaplacian [Vlasáková, 2012], the Dirac operator \not{D} [Eastwood-Somberg-Souček], the Schrödinger operator [Bekaert-Meunier-Moroz, JHEP 2012], the superLaplacian [Coulembier-Somberg-Souček, IMRN 2013].
- They all read as $\mathfrak{U}(\mathfrak{g})/\mathcal{J}$, with $\mathfrak{g} \hookrightarrow \operatorname{Vect}(\mathbb{R}^n)$ acting by Lie derivative on $\Gamma(E)$.

For the Laplacian
$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}$$
, acting on $\mathcal{E} := \mathcal{C}^{\infty}(\mathbb{R}^n, \mathbb{C})$:

- second order symmetries allow to classify separating coordinates for the Laplace equation $\Delta f = 0$;
- $\mathfrak{g} = \mathfrak{o}(n+2,\mathbb{C})$ and \mathcal{J} is the Joseph ideal, so that ker Δ is the minimal representation of O(p+1, q+1);
- $\mathfrak{U}(\mathfrak{g})/\mathcal{J}$ is an algebra of symmetries in higher spin field theories.

Let *E*, *F* be two irreducible homogeneous vector bundles over M = G/P. Assume $D \in \mathcal{D}(M; E, F)$ is a G-invariant diff. op.

Conjecture

The algebra of HS of D is the quotient $\mathfrak{U}(\mathfrak{g})/\mathcal{J}$, with \mathcal{J} the annihilator of ker D.

What about HS of systems of invariant differential operators?

Introduction	Classification of HS	Algebra of higher symmetries
00000	000	00000
Problematic		

Let S be the spinor bundle over the pseudo-Euclidean space (\mathbb{R}^n, g) .

Determine the algebra of HS of the system of differential operators

$$\begin{array}{rcl} \mathcal{E}[-\frac{n-2}{2}] \oplus \mathcal{S}[-\frac{n-1}{2}] & \to & \mathcal{S}[-\frac{n+1}{2}] \oplus \mathcal{E}[-\frac{n+2}{2}] \\ & \begin{pmatrix} f \\ \phi \end{pmatrix} & \mapsto & \begin{pmatrix} \Delta f \\ \not \phi \phi \end{pmatrix} \end{array}$$

Introduction	Classification of HS	Algebra of higher symmetries
00000	000	00000
Problematic		

Let S be the spinor bundle over the pseudo-Euclidean space (\mathbb{R}^n, g) .

Determine the algebra of HS of the system of differential operators

$$\begin{aligned} \mathcal{E}[-\frac{n-2}{2}] \oplus \mathcal{S}[-\frac{n-1}{2}] &\to \quad \mathcal{S}[-\frac{n+1}{2}] \oplus \mathcal{E}[-\frac{n+2}{2}] \\ \begin{pmatrix} f \\ \phi \end{pmatrix} &\mapsto \quad \begin{pmatrix} \Delta f \\ \not D \phi \end{pmatrix} \end{aligned}$$

The HS read as

$$\begin{pmatrix} \Delta & 0 \\ 0 & \not{D} \end{pmatrix} \begin{pmatrix} a & \alpha^{-} \\ \alpha^{+} & A \end{pmatrix} = \begin{pmatrix} b & \beta^{+} \\ \beta^{-} & B \end{pmatrix} \begin{pmatrix} \Delta & 0 \\ 0 & \not{D} \end{pmatrix}$$

with new symmetries:

$$\Delta \alpha^- = \beta^+ \not\!\!D$$
 on $\mathcal{S}[-\frac{n-1}{2}]$ and $\not\!\!D \alpha^+ = \beta^- \Delta$ on $\mathcal{E}[-\frac{n-2}{2}]$

2 Classification of HS

- HS of Laplacian
- HS of Dirac operator
- HS of the system Laplace + Dirac operator

Examples: Up to constants, first order symmetries are given by

$$\Delta(X+\frac{n-2}{2n}\partial_i X^i)=(X+\frac{n+2}{2n}\partial_i X^i)\Delta,$$

where X is conformal Killing vector field, i.e. $L_X g \in [g]$ or $\nabla_{(i} X_{j)o} = 0$. The Lie algebra of such vector fields is $\mathfrak{g} = \mathfrak{o}(n+2,\mathbb{C})$.

Definition: a symmetric conformal Killing k-tensor K is a solution of the equation $\nabla_{(i_0} K_{i_1 \cdots i_k)_0} = 0$.

Theorem

For all $w \in \mathbb{R}$, there exists a unique g-equivariant linear isomorphism $\mathcal{Q}_w : \Gamma(STM) \to \mathcal{D}_w(\mathbb{R}^n)$, such that $\mathcal{Q}_w(K) = K^{i_1 \cdots i_k} \partial_{i_1} \dots \partial_{i_k} + l.o.t.$. The map $\mathcal{Q}_{-\frac{n-2}{2}}$ induces a bijection between symmetric conformal Killing tensors and HS of Laplacian.

Introduction	Classification of HS	Algebra of higher symmetries
00000	000	00000

Higher symmetries of Dirac operator [Eastwwod-Somberg-Souček][M., Silhan]

Let $\gamma: \wedge T^*M[1] \to \operatorname{End} S$, so that $otin = \gamma^i \partial_i$.

Examples: Up to constants, first order symmetries are [Benn-Charlton, 1997]:

$$\begin{aligned} X &- \frac{1}{2} \gamma(\boldsymbol{d} X^{\flat}) + \frac{n-1}{2n} (\partial_i X^i), \\ \mathbf{g}^{ij} \gamma(\iota_{e_i} \mathcal{K}) \nabla_{e_j} &- \frac{\kappa}{\kappa+1} \gamma(\boldsymbol{d} \mathcal{K}) + \frac{n-\kappa}{2(n+1-\kappa)} \gamma\left(\boldsymbol{\delta} \mathcal{K}\right) \end{aligned}$$

where X is conformal Killing vector field and K a conformal Killing κ -form.

Definition: a conformal Killing (k, κ) -tensor $K \in \Gamma(\mathcal{S}^k T M \otimes \wedge^{\kappa} T^* M[1])$ is a solution of $\Pi(\nabla_{(i_0} K_{i_1 \cdots i_k})_{[j_1 \cdots j_{\kappa}]}) = 0$, with Π a specific projection.

Theorem

For all $w \in \mathbb{R}$, there exists a unique g-equivariant linear isomorphism $\mathcal{Q}_w : \Gamma(STM \otimes \wedge T^*M[1]) \to \mathcal{D}(\mathbb{R}^n, S[w]), s.t.$ $\mathcal{Q}_w(K) = K_{[j_1 \cdots j_{\kappa}]}^{(i_1 \cdots i_k)} \gamma^{j_1} \cdots \gamma^{j_{\kappa}} \partial_{i_1} \cdots \partial_{i_k} + lot.$ The map $\mathcal{Q}_{-\frac{n-1}{2}}$ induces a bijection between conformal Killing tensors and HS of the Dirac operator.

Introduction	Classification of HS	Algebra of higher symmetries
00000	00•	00000

HS of the system Laplace + Dirac operator

Let $\varepsilon \in S^* \otimes S^*$ be the invariant pairing on S.

Examples: if $\Lambda \in S[\frac{1}{2}]$ is a twistor spinor, $\nabla_i \Lambda = -\frac{1}{n} \gamma_i(\not D \Lambda)$, the following are symmetries [Wess-Zumino, Nucl. Phys. B 1974]:

$$\begin{split} \Delta \alpha_{\Lambda}^{-} &= \beta_{\Lambda}^{+} \not D, \quad \begin{cases} \alpha_{\Lambda}^{-}(\phi) = \varepsilon(\Lambda, \phi), \\ \beta_{\Lambda}^{+}(\not D \phi) = \varepsilon(\Lambda, \not D^{2} \phi) + \frac{2}{n} \varepsilon(\not D \Lambda, \not D \phi), \end{cases} \quad \phi \in \mathcal{S}[-\frac{n-1}{2}]; \\ \not D \alpha_{\Lambda}^{+} &= \beta_{\Lambda}^{-} \Delta, \quad \begin{cases} \alpha_{\Lambda}^{+}(f) = \gamma^{i}(\Lambda) \partial_{i} f + \frac{n-2}{n} (\not D \Lambda) \cdot f, \\ \beta_{\Lambda}^{-}(\Delta f) = \Lambda \cdot \Delta f, \end{cases} \quad f \in \mathcal{E}[-\frac{n-2}{2}]. \end{split}$$

Theorem

The matrix of operators
$$\begin{pmatrix} a & \alpha^- \\ \alpha^+ & A \end{pmatrix}$$
 is a HS iff
• a is a HS of Δ and A is a HS of \not{D} ,
• $\alpha^- = \sum_i a_i \circ \alpha^-_{\Lambda_i}$, with a_i HS of Δ and $\alpha^-_{\Lambda_i}$ as above,
• $\alpha^+ = \sum_i \alpha^+_{\Lambda_i} \circ a_i$, with a_i HS of Δ and $\alpha^+_{\Lambda_i}$ as above.

Composition of twistor spinors actions

Lie (super-)algebra ?

Hint from Rep. Theory:

- in odd dimension, $TwSp \otimes TwSp \cong \wedge^+ \mathbb{C}^{n+2} \cong$ space of conf. Killing odd forms:
- in even dimension, $TwSp \otimes TwSp \cong \wedge \mathbb{C}^{n+2} \cong$ space of all conf. Killing forms, whereas $\mathrm{TwSp}^+ \otimes \mathrm{TwSp}^- \cong \wedge^+ \mathbb{C}^{n+2} \cong$ space of conf. Killing odd forms:

Fact: the composition $\alpha_{\Lambda'}^+ \circ \alpha_{\Lambda}^-$ gives indeed rise to all HS of 1st order of \mathcal{D} .

 \Rightarrow Algebra of HS is not generated by a Lie (super-)algebra!

Composition of twistor spinors actions

Lie (super-)algebra ?

Candidate: Conf. Killing vector fields \oplus Twistor-spinors.

Hint from Rep. Theory:

- in odd dimension, ${\rm TwSp}\otimes {\rm TwSp}\cong\wedge^+\mathbb{C}^{n+2}\cong$ space of conf. Killing odd forms;
- in even dimension, $TwSp \otimes TwSp \cong \wedge \mathbb{C}^{n+2} \cong$ space of all conf. Killing forms, whereas $TwSp^+ \otimes TwSp^- \cong \wedge^+ \mathbb{C}^{n+2} \cong$ space of conf. Killing odd forms;

Fact: the composition $\alpha_{\Lambda'}^+ \circ \alpha_{\Lambda}^-$ gives indeed rise to all HS of 1st order of \not{D} .

 \Rightarrow Algebra of HS is not generated by a Lie (super-)algebra!

Idea: If dimension=3 (or 4 and $D : S^+ \to S^-$), then the 1st order symmetries of D are all given by the Lie algebra $\mathfrak{o}(n+2,\mathbb{C}) \oplus \mathbb{C}$ and we have

$$\mathfrak{o}(5) \cong \mathfrak{sp}(4)$$
 and $\mathfrak{o}(6) \cong \mathfrak{sl}(4)$.

Int ro du	ction
00000	

Classification of HS

Algebra of higher symmetries ●●○○○

11 / 14

Supergeometric reformulation

 $\Pi S^* \cong \mathbb{R}^{3|2}$ is a supermanifold with sheaf of functions

$$\mathcal{O}(\Pi S^*) = \mathcal{E} \oplus \mathcal{S} \oplus \wedge^2 \mathcal{S}.$$

The pairing ε is a distinguished element of $\wedge^2 \mathcal{S}\cong \mathcal{E}.$ We define

$$\Box: \mathcal{O}\Big(\Pi S^*[-\frac{1}{2}]\Big)[-\frac{n-2}{2}] \to \mathcal{O}\Big(\Pi S^*[-\frac{1}{2}]\Big)[-\frac{n}{2}]$$

by the formula
$$\Box:=\varepsilon\Delta + \not\!\!D + \varepsilon^* = \begin{pmatrix} 0 & 0 & 1\\ 0 & \not\!\!D & 0\\ \Delta & 0 & 0 \end{pmatrix}.$$

Proposition

The algebra of HS of arnothing is isomorphic to the one of $\left(egin{array}{c} I & I \ I & I \end{array}
ight)$

$$f\left(\begin{array}{cc}\Delta & 0\\ 0 & \not D\end{array}\right)$$

Twistor-spinors as odd vector fields

Let (x^{i}, θ^{a}) be coordinates on $\mathbb{R}^{3|2}$ and $(\partial_{i}, \partial_{\theta^{a}})$ the corresponding derivatives. We define on $\mathcal{O}\left(\prod S^{*}[-\frac{1}{2}]\right)[w]$ • $L_{X} = X^{i}\partial_{i} - \frac{1}{2}\gamma(\mathbf{d}X^{\flat})^{b}_{a}\theta^{a}\partial_{\theta^{b}} - (\frac{w}{n} - \frac{1}{2n}\theta^{a}\partial_{\theta^{a}})(\partial_{i}X^{i}),$ • $L^{+}_{x} = \gamma^{i}\partial_{a}A^{b}\partial_{a}\partial_{a} - 2(w + \frac{1}{n}\partial_{a}\partial_{a})(DA)$

•
$$L^+_{\Lambda} = \gamma^i {}^a_b \Lambda_a \theta^b \partial_i - 2(\frac{w}{n} + \frac{1}{n} \theta^a \partial_{\theta^a})(\not D \Lambda),$$

•
$$L^-_{\Lambda} = \varepsilon^{ab} \Lambda_a \partial_{\theta b}$$
.

We have

$$\Box L_X = L_X \Box, \qquad \Box L_{\Lambda}^+ = L_{\Lambda}^- \Box, \qquad \Box L_{\Lambda}^- = L_{\Lambda}^+ \Box.$$

Proposition

The space $\langle c, L_X \rangle \oplus \langle L_\Lambda^+, L_\Lambda^- \rangle$ is stable under the commutator in $\mathcal{D}_w(\mathbb{R}^{3|2})$ and isomorphic to the Lie superalgebra $\operatorname{spo}(4|2)$.

Introduction	Classification of HS	Algebra of higher symmetries
00000	000	○○○●○
Main result		

Theorem

The algebra of HS of of \square and $\begin{pmatrix} \Delta & 0 \\ 0 & \not D \end{pmatrix}$ is isomorphic to $\mathfrak{U}(\mathfrak{spo}(4|2))/\mathcal{J}$, with \mathcal{J} the Joseph-like ideal.

We have

$$\mathfrak{g} \odot \mathfrak{g} = \operatorname{\underline{\qquad}} \oplus \operatorname{\underline{\qquad}} \oplus \operatorname{\underline{\qquad}} \oplus \operatorname{\underline{\qquad}} \oplus \mathbb{C} \cdot (\mathsf{Casimir}).$$

 \mathcal{J} is generated by

$$\square_{\bullet} \oplus \square_{\bullet} \oplus \mathbb{C} \cdot (\mathsf{Casimir} - \rho).$$

Conclusion

HS of system of differential operators:

- new symmetries,
- new realization of representations,
- applications to higher spin field theories.