Conformally equivariant quantization of supercotangent bundles

Centre de physique théorique, Luminy case 907, 13288 Marseille cedex 09, France

Abstract

\section*{Abstract}

Let (M, g) be a conformally flat spin manifold. Conformally equivariant quantization [DLO99, DOO1], $\mathcal{Q}^{\lambda, \mu}: \mathcal{S}^{\delta}(M) \rightarrow \mathcal{D}^{\lambda, \mu}(M)$, is a conformally equivariant mapping be tween weighted symbols and differential operators acting on densities over M. We extend here this construction to super symbols, which are functions on the supercotangent bundle \mathcal{M} of M, and to the space of differential operators acting on spinor densities over M. We obtain an explicit covariant expression of $\mathcal{Q}^{\lambda, \mu}$ on symbols of degree one in the even momenta,

 invariant differential operators and Killing-Yano tensors are given.
Equivariant quantization of cotangent bundles

Let G be a Lie group of Lie algebra \mathfrak{g}, and M be a manifold endowed with a G-flat st Then $\mathfrak{g} \subset \operatorname{Vect}(M)$. We denote by $\mathcal{F}^{\lambda}=\Gamma\left(\left|\Lambda^{n} T^{*} M\right|^{\otimes \lambda}\right)$ the space of λ-densities.

1. Phase space: $\mathfrak{g} \circlearrowleft\left(T^{*} M, \omega_{T^{*} M}\right)$, where $\omega_{T^{*} M}=d p_{i} \wedge d x^{i}$
2. Space of classical observables: the Vect (M)-module $\mathcal{S}^{\delta}(M)=\Gamma(\mathcal{S T M}) \otimes \mathcal{F}^{\delta}$ $\mathcal{C}^{\infty}\left(T^{*} M\right) \otimes \mathcal{F}^{\delta}$ of δ-weighted symbols, with $\delta=\mu-\lambda$.
3. Space of quantum observables: the $\operatorname{Vect}(M)$-module $\mathcal{D}^{\lambda, \mu}(M)$ of differential operator 3. Space of quantum onsities, $A: \mathcal{F}^{\lambda} \rightarrow \mathcal{F}^{\mu}$
Anser

Definition 0.1. A G-equivariant quantization of the cotangent bundle $T^{*} M$ is a morphism of \mathfrak{g}-modules, $\mathcal{Q}^{\lambda, \mu}: \mathcal{S}^{\delta}(M) \rightarrow \mathcal{D}^{\lambda, \mu}(M)$, preserving the principal symbol. - Existence and uniqueness of the conformally equivariant quantization [DLO99]. Explicit - Existence and uniqueness of the conformaly equivariant quantiz. $\mathcal{Q}^{\lambda, \mu}$ acting on symbols of degrees less than 2 [DOo1]

- For $\lambda=\mu=\frac{1}{2}$, it defines a conformally invariant star-product [DEGO04].

Classical and quantum spaces of spin systems

Let (M, g) be a pseudo-riemannian spin manifold, representing the configuration space of a spin system.

1. Phase space: the supercotangent bundle $\mathcal{M}=T^{*} M \times_{M} \Pi T M$, with Π the parity reversing functor. We denote by ($\left.x^{i}, p_{i}, \xi^{i}\right)$ a system of natural local coordinates, generating locally $\mathcal{C}^{\infty}(\mathcal{M})=\mathcal{C}^{\infty}\left(T^{*} M\right) \otimes \Omega(M)$. Its canonical symplectic form is [Rot91]

$$
\omega=d p_{i} \wedge d x^{i}+\frac{\hbar}{4 i} g_{l m} R_{k i j}^{m} \xi^{k} \xi^{l} d x^{i} \wedge d x^{j}+\frac{\hbar}{2 i} g_{i j} d^{\nabla} \xi^{i} \wedge d^{\nabla} \xi^{j} .
$$

2. Space of classical observables: the space of super δ-weighted symbols $\mathcal{S}^{\delta}[\xi]=$ $\Gamma\left(\mathcal{S} T M \otimes \Lambda T^{*} M\right) \otimes \mathcal{F}^{\delta}$, included in $\mathcal{C}^{\infty}(\mathcal{M}) \otimes \mathcal{F}^{\delta}$. It is graded by the degrees in p and in $\xi: \mathcal{S}^{\delta}(M)=\bigoplus_{k, \kappa} \mathcal{S}_{k, \kappa}^{\delta}[\xi]$.
3. Space of quantum observables: the space of differential operators acting on spinor den sities $\mathrm{D}^{\lambda, \mu}$, filtered by the order: $\mathrm{D}_{0}^{\lambda, \mu} \subset \mathrm{D}_{1}^{\lambda, \mu} \subset$
Let us introduce the Darboux coordinates given by the map ev ${ }_{g}$ on \mathcal{M}

$$
\operatorname{ev}_{g}\left(x^{i}\right)=x^{i}, \quad \tilde{\xi}^{a}=\operatorname{ev}_{g}\left(\xi^{i}\right)=\theta_{i}^{a} \xi^{i} \quad \text { and } \quad \tilde{p}_{i}=\operatorname{ev} g\left(p_{i}\right)=p_{i}+\omega_{b i}^{a} \tilde{j}_{a} \tilde{\xi}^{b}
$$

where ω is the Levi-Civita connection and θ an orthonormal frame. On a chart U, the normal ordering is defined by [Get83]

$$
\mathcal{N}: \mathcal{S}^{\delta}(U)[\xi] \rightarrow \mathrm{D}^{\lambda, \mu}(U)
$$

$P_{j_{1} \cdots j_{k}}^{i_{1} \cdots i_{k}}(x) \tilde{\xi}^{\tilde{j}_{1}} \ldots \tilde{\xi}^{j_{k}} \tilde{p}_{i_{1}} \cdots \tilde{p}_{i_{k}} \mapsto P_{j_{1} \cdots j_{k}}^{i_{1} \cdots i_{k}}(x) \frac{\gamma^{j_{1}}}{\sqrt{2}} \cdots \frac{\gamma^{j_{k}}}{\sqrt{2}} \frac{\hbar}{i} \partial_{i_{1}} \cdots \frac{\hbar}{i} \partial_{i_{k}}$

The geometric quantization Q_{G} of (\mathcal{M}, ω)

 complex subbundle P of $T^{\mathbb{C}} M$ whose fibers are isotropic and maximal for g. Suppose that P defines a N-structure on (M, g). Then, (\mathcal{M}, ω) admits a polarization, and
polarized functions are sections of ΛP^{*} polarized functions are sections of ΛP^{*}
Theorem 0.3. $\bullet Q_{G}\left(\mathcal{S}_{0}(\xi)\right) \simeq \mathrm{Cl}(M, g)$ turns ΛP^{*} in a spinor bundle of M.
$\bullet Q_{G}\left(\mathcal{J}_{X}^{T^{*} M}\right)=\nabla_{X}$, where $\mathcal{J}^{T^{*} M}: T^{*} M \rightarrow(\operatorname{Vect}(M))^{*}$ is the momentum map and
∇_{X} is the spinor covariant derivative ∇_{X} is the spinor covariant derivative.

- Q_{G} is defined on $\mathcal{S}_{1} \oplus \mathcal{S}_{0}[\xi]$, and coincide with the normal ordering \mathcal{N}

Classical and quantum actions of the conformal Lie algebra $\operatorname{conf}(M, g)$
$\operatorname{conf}(M, g)=\left\{X \in \operatorname{Vect}(M) \mid L_{X} g=F g\right.$, for $\left.0<F \in \mathcal{C}^{\infty}(M)\right\} \leq \mathrm{o}(p+1, q+1)$. Let $\alpha=p_{i} d x^{i}+\frac{\hbar}{2 i} g_{i j} \xi^{i} d^{\nabla} \xi^{j}$ be the potential 1-form of \mathcal{M}, i.e. $d \alpha=\omega$, and let $\beta=g_{i j} \xi^{i} d x^{j}$. Theorem 0.4. There is a unique lift $\operatorname{conf}(M, g) \ni X \mapsto \tilde{X} \in \operatorname{Vect}(\mathcal{M})$ preserving α and the direction of β
We denote by $\mathbb{L}_{X}^{\delta}=X^{i} \partial_{i}-p_{j}\left(\partial_{i} X^{j}\right) \partial_{p_{i}}+\xi^{i}\left(\partial_{i} X^{j}\right) \partial_{\xi^{j}}+\delta\left(\partial_{i} X^{i}\right)$ the natural action of X on $\mathcal{S}^{\delta}[\xi]$. Its hamiltonian action is given by $L_{X}^{\delta}=\tilde{X}+\delta \partial_{i} X^{i}$, i.e.,

$$
L_{X}^{\delta}=\operatorname{ev} \mathbb{L}_{X}^{\delta}(\operatorname{evg})^{-1}-\frac{\partial_{i} X^{i}}{n} \tilde{\xi}^{i} \partial_{\tilde{\xi}^{i}}-\frac{\hbar}{2 i} \tilde{\tilde{\xi}}^{\xi} \tilde{\xi}^{j}\left(\partial_{i} \partial_{j} X^{k}\right) \partial_{\tilde{p}_{i}} .
$$

The Lie derivative of spinors [Kos72] (of weight λ) along $X \in \operatorname{conf}(M, g)$ is given by

$$
\left\llcorner_{X}^{\lambda}=Q\left(\mathcal{J}_{X}^{\mathcal{M}}\right)+\lambda \nabla_{i} X^{i}=\nabla_{X}+\frac{1}{4} \nabla_{[j} X_{i]} \gamma^{i} \gamma^{j}+\lambda \nabla_{i} X^{i}\right.
$$

where $\mathcal{J}^{\mathcal{M}}: \mathcal{M} \rightarrow(\operatorname{conf}(M, g))^{*}$ is the momentum map. The quantum action of $X \in$ $\operatorname{conf}(M, g)$ on $A \in \mathrm{D}^{\lambda, \mu}$ is defined as $\mathcal{L}_{X}^{\lambda, \mu} A=\mathrm{L}_{X}^{\mu} A-A \mathrm{~L}_{X}^{\lambda}$
Proposition 0.5. $\mathcal{N}^{-1} \circ \mathcal{L}_{X}^{\lambda, \mu} \circ \mathcal{N}-L_{X}^{\delta}=$ nilpotent operator lowering the degree in p.

Main results

Let (M, g) be a conformally flat spin manifold, of dimension n.
Theorem 0.6. For δ generic, there exists a unique conformally equivariant quantization $\left.\mathcal{Q}^{\lambda, \mu}: \mathcal{S}^{\delta} \mid \xi\right] \rightarrow \mathrm{D}^{\lambda, \mu}$.
Theorem 0.7. Let $\mathcal{Q}^{\lambda, \mu}: \mathcal{S}_{1}^{\delta}[\xi] \rightarrow \mathrm{D}_{1}^{\lambda, \mu}$ be a conformally equivariant quantization. 1. If $n \delta \notin\{1, \ldots, n+1\}$, then $\mathcal{Q}^{\lambda, \mu}$ exists and is unique.
2. If $n \delta=1$, or $n \delta=n+1$, and $\left(\lambda=\frac{n-1}{2 n}, \mu=\frac{n+1}{2 n}\right)$ or $\left(\lambda=\frac{-1}{2 n}, \mu=\frac{2 n+1}{2 n}\right)$, then $\mathcal{Q}^{\lambda, \mu}$ exists but is not unique. With the additionnal condition $\mathcal{Q}^{\lambda, \mu}(\bar{P})=\mathcal{Q}^{\lambda, \mu}(P)^{*}$, uniqueness is recovered. These values are called resonances.
3. Else, there exists no such $\mathcal{Q}^{\lambda, \mu}$.

Let \mathcal{T}^{δ} be the conf (M, g)-module $\left(\oplus_{\kappa} \mathcal{S}_{x, \kappa^{\kappa}}^{\delta-\frac{\kappa}{n}}, \mathbb{L}_{X}^{\delta}\right)$. The conformal equivariant superization $S_{\mathcal{T}}^{\delta}: \mathcal{T}^{\delta} \rightarrow \mathcal{S}^{\delta}[\xi]$ exists and is unique in the generic case. Restricting $S_{\mathcal{T}}^{\delta}$ to symbols of degree 1 in p, the critical values of δ are $\delta=\frac{2}{n}, \cdots, \frac{n}{n}$.

In terms of ∂^{∇} the horizontal derivation, $\mathcal{Q}^{\lambda, \mu}$ has for expression in the generic case
$\mathcal{Q}^{\lambda, \mu}(P)=\mathcal{N}\left(P^{i}\right) \frac{\hbar}{\mathrm{K}} \nabla_{i}^{\lambda}$
$+\mathcal{N}\left(\left(c_{d}+c_{\lambda \psi}\right) \partial_{i}^{\nabla} P^{i}-c_{\lambda \psi} g^{i j} g_{k l}{ }^{l} \partial_{i}^{\nabla} P_{j}^{k}+c_{\gamma \omega} \xi^{i} \partial_{i}^{\nabla} P_{j}^{j}+c_{\lambda \omega} g^{i j} \partial_{i}^{\nabla} P_{k j}^{k}\right)$,
where $P^{i}=\partial_{p_{i}} P, P_{i}=\partial_{\xi_{i}} P$, and the coefficients are functions of the degree of P in ξ. ${ }^{(2)}$

Applications and example

All the following results stand on (M, g) a conformally flat spin manifold, of dimension n. Proposition 0.8. $\mathcal{J}_{X}^{T^{*}} M \xrightarrow{S_{T}^{0}} \mathcal{J}_{X}^{\mathcal{M}} \xrightarrow{\mathcal{Q}^{1, \lambda}} \mathrm{~L}^{\lambda}$
Let $\Delta=\tilde{p}_{i} \tilde{\xi}^{i}, \chi=\left(\operatorname{vol}_{g}\right)_{1} \cdots i_{n} \tilde{\xi}^{i_{1}} \ldots \tilde{\xi}^{i_{n}}$ and $\Delta * \chi$ be their Moyal star-product w.r.t ω Theorem 0.9. The conformally invariant elements of modules \mathcal{T}, \mathcal{S} and D are - $\operatorname{ev}_{g}^{-1}\left(\Delta^{a} * \chi^{b} R^{s}\right) \in \mathcal{T}^{\frac{2 s+a}{n}}$, where $a, b=0,1$ and $s \in \mathbb{N}$,

- $\Delta^{a} * \chi^{b} R^{s} \in \mathcal{S}^{\frac{2+5 a}{n}}[\xi]$, where $s \in \mathbb{N}$ and $a, b=0,1$ s.t. $a+b \neq 0$;
$\bullet \mathcal{N}(\chi) \in \mathrm{D}^{\lambda, \lambda}$, or $\mathcal{N}(\Delta * \chi) \in \mathrm{D}^{\frac{n-1}{2 n}, \frac{n+1}{2 n}}$, or $\mathcal{N}\left(\Delta R^{s}\right) \in \mathrm{D}^{\frac{n-2 s-1}{2 n}, \frac{n+2 s+1}{2 n}}$, for all $\lambda \in \mathbb{R}$ and $s \in$
When $S_{\mathcal{T}}^{\delta}$ and $\mathcal{Q}^{\lambda, \mu}$ exist, we have: $\left(\mathcal{T}^{\delta}\right)^{\text {conf }} \xrightarrow{S_{\mathcal{T}}^{\delta}}\left(\mathcal{S}^{\delta}\right)^{\text {conf }} \xrightarrow{\mathcal{Q}^{\lambda, \mu}}\left(\mathrm{D}^{\lambda, \mu}\right)^{\text {conf }}$.
Corollary 0.10. The Dirac operator arises as the conformally equivariant quantization of the conformal invariant symbol $\Delta \in \mathcal{S}_{n}$

$$
\mathcal{Q}^{\frac{n-1}{2 n}, \frac{n+1}{2 n}}(\Delta)=\frac{\gamma^{i}}{\sqrt{2}} \nabla_{i} \in \mathcal{D}^{\frac{n-1, n+1}{2 n}, \frac{n+1}{2 n}}, \quad \text { (3) }
$$

the weights $\left(\frac{n-1}{2 n}, \frac{n+1}{2 n}\right)$ corresponding to one of the two resonances of $\mathcal{Q}^{\lambda, \mu}$.
Definition 0.11. A conformal Killing-Yano (CKY) tensor of order κ is a κ-form f satisfying

$$
\nabla_{\left(j_{1} 1\right.} f_{\left.j_{2}\right) j_{3} \ldots j_{k+1}}=g_{j_{1}, j_{2}} \Phi_{j_{3} \ldots j_{k+1}}-(\kappa-1) g_{\left[j _ { 3 } \left(j_{1}\right.\right.} \Phi_{\left.\left.\left.j_{2}\right)\right)_{4} \ldots j_{k+1}\right]}
$$

where $\Phi=\frac{1}{n-\kappa+1} \nabla_{j_{1}} f_{j_{2} \ldots, j_{k}}^{j_{1}}$. If $\Phi=0, f$ is a Killing-Yano tensor.
For f a tensor of order κ, we denote by $P_{f}=f_{j_{1} \ldots j_{k-1}}^{i} 1^{j_{1}} \ldots \xi^{j_{k-1}} p_{i} \in \mathcal{T}^{0}$
Theorem 0.12 (Generalization of [Tan95]).
$\left\{\Delta, \mathcal{S}_{\mathcal{T}}^{0}\left(P_{f}\right)\right\}=0(\alpha \Delta) \Longleftrightarrow f$ is a (conformal) Killing-Yano tensor.
Proposition 0.13. Let f be a Killing-Yano tensor of order 2, then

$$
\begin{equation*}
\mathcal{Q}^{\lambda, \lambda}\left(S_{\mathcal{T}}^{0}\left(P_{f}\right)\right)=\frac{\hbar}{i \sqrt{2}}\left(f_{j}^{i} \gamma^{j} \nabla_{i}+\frac{1}{6} \gamma^{i} \gamma^{j} \gamma^{k} \nabla_{i} f_{j k}\right) . \tag{6}
\end{equation*}
$$

References

).

